
Georgia Institute of Technology, Technical Report, GT-GOLEM-2010-001

The Motion Grammar
Linguistic Perception, Planning, and Control

Neil Dantam
ntd@gatech.edu

Mike Stilman
mstilman@cc.gatech.edu

Center for Robotics and Intelligent Machines
Georgia Institute of Technology

801 Atlantic Dr., Atlanta, GA 30332

ABSTRACT
We present the Motion Grammar: a novel unified representation
for task decomposition, perception, planning, and hybrid control
that provides a computationally tractable way to control robots in
uncertain environments with guarantees on completeness and cor-
rectness. The grammar represents a policy for the task which is
parsed in real-time based on perceptual input. Branches of the syn-
tax tree form the levels of a hierarchical decomposition, and the
individual robot sensor readings are given by tokens. We imple-
ment this approach in the interactive game of Yamakuzushi on a
physical robot resulting in a system that repeatably competes with
a human opponent in sustained game-play for matches up to six
minutes.

Categories and Subject Descriptors
F.4.2 [Grammars and Other Rewriting Systems]: Context Free;
F.4.3 [Formal Languages]: Context Free; I.2.8 [Problem Solv-
ing, Control Methods, Search]: Plan execution, formation, and
generation; I.2.9 [Robotics]: Manipulators

General Terms
Theory, Reliability

Keywords
Robotics, Manipulation, Formal Methods, Grammars, Control

1. INTRODUCTION
As robots come into increasing contact with humans, it is ab-

solutely vital to prove that these potentially dangerous machines
are safe and reliable. Furthermore, applying robots to increasingly
complicated and varied tasks requires a tractable way to generate
desired behaviors. Typical reactive strategies do not provide a way
to prove how the system will respond during complicated tasks with
uncertain outcomes [28, 2]. Existing deliberative planners often
simplify the control system or have prohibitive computational cost
[30]. By representing perception and control of robotic systems us-
ing Context-Free Grammars, our Motion Grammar enables robots
to handle uncertainty in the outcomes of control actions through on-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

line parsing. Furthermore, the grammar makes it possible to prove
that the system will respond to all possible situations.

Imagine a robot searching for earthquake survivors. This robot
must carefully remove pieces of rubble while ensuring that the
larger structure does not collapse. It must also coordinate its efforts
with other robots and human rescuers. We consider a simplified
version of this scenario in the two-player game of Yamakuzushi.
While the game is adversarial, the robot and human collaborate to
safely disassemble a pile of Shogi pieces. The game contains many
of the challenging elements of physical human-robot interaction.
For instance, both the robot and human make careful contact with
pieces without causing them to fall. The robot slides pieces without
losing contact. It also observes human actions and handles danger-
ous conditions. The key to all these interactions is that the robot
must handle uncertainty. Our Motion Grammar guarantees that the
robot responds to the complete range of uncertain outcomes online.

Our proposed linguistic method for computation in robotic sys-
tems yields three critical properties: hierarchical specification, im-
mediate response to uncertainty and provable completeness. Most
robot tasks can be recursively divided into a number of simpler sub-
tasks. The hierarchical nature of grammatical productions and the
corresponding parse trees are well suited to representing this hier-
archical task decomposition. Existing work has applied grammars
to problems in perception [15, 17, 24, 33]. Our Motion Grammar
seamlessly integrates this approach with robotic control. Finally,
Context-Free grammars represent a balance between power, com-
putational cost and provability. This allows the system designer
to tackle a broader class of problems while simultaneously using
practical computational resources and proving desired response.

This paper discusses related work, the theory behind the Mo-
tion Grammar, and presents our experimental validation using the
game of Yamakuzushi. Sect. 2 explores related methods in plan-
ning and control, other uses of grammars related to robotics, and
the use of Finite Automata in robotic systems. Sect. 3 formally
defines the Motion Grammar and explain the requirements for ap-
plying context-free grammars to robotic systems. Sect. 5 describes
our application of the Motion Grammar to the interactive game Ya-
makuzushi. Sect. 6 analyzes provability and properties of the Mo-
tion Grammar. Finally, Sect. 7 introduces some of the numerous
possible extensions to the Motion Grammar approach.

2. RELATED WORK
Existing methods for planning and policy generation typically

trade off efficiency for analytical properties such as completeness.
For instance, classical planners such as those based on STRIPS,
Prolog decision makers, and modern PDDL symbolic reasoning
methods [30] can guarantee completeness by reducing planning to
theorem proving. However, the problem of inference in proposi-

tional and first order logic is NP-complete [30]. Furthermore, se-
mantic methods do not explicitly address continuous domains. Par-
tially Observable Markov Decision Processes can explicitly repre-
sent domains with uncertainty. However, POMDP solvers are also
NP-complete [26]. The Motion Grammar provides a natural repre-
sentation for hybrid continuous-discrete systems and by employing
Context-Free languages, guarantees worst case O(n3) runtime [10].

There is a large body of literature on grammars from the Linguis-
tic and Computer Science communities, with a number applications
related to robotics focusing on image processing. Fu did some early
work in syntactic pattern recognition [15]. Han uses attribute graph
grammars to parse images of indoor scenes by describing the re-
lationships of planes in the scene according to production rules
[17]. Koutsourakis uses grammars for single view reconstruction
by modeling the basic shapes in architectural styles and their rela-
tions using syntactic rules [24]. Toshev uses grammars to recog-
nize buildings in 3D point clouds [33] by syntactically modeling
the points as planes and volumes. B. Stilman’s Linguistic Geome-
try applies a syntactic approach to deliberative planning and search
in adversarial games [32]. These works show that grammars are
useful beyond their traditional role in the Linguistic, Theoretical,
and Programming Language communities. Our approach applies
grammars to online control of robotic systems.

Some widely fielded efficient control architectures for robot ma-
nipulators are behavior-based methods introduced by Brooks [6]
and Arkin [2]. Experimental validation of such methods poses a
challenge for large correlated state spaces, such as physical human-
robot manipulation, where a complete finite set of evaluations re-
quires a discretization of state space that is exponential in the num-
ber of objects and robot DOF. Traditionally, the primary validation
of behavioral problem decomposition has been experimental since
it was thought that formal methods have unacceptable computa-
tional requirements [28]. Yet, recent work shows the feasibility
and importance of formal analysis [13, 25, 23, 10]. We argue that
the common applications of behavior-based robotics including mil-
itary and personal service require formal verification. It is essential
to guarantee that robots will not cause accidental injury or dam-
age. [2] formalizes behavior semantics with schema theory, yet it
does not ensure completeness. [3] proposes an Ethical Architec-
ture to assist with correctness in the military domain. The Motion
Grammar provides a more general solution to complete operation
through domain-independent specification of robot response.

There exist a number of alternative formal methods for robot
control. Control of Discrete Event Systems was pioneered by [29]
and is detailed in [7]. [21] describes the Computation and Control
Language (CCL), a type-safe domain specific language. However,
because this language is Turing-complete, Rice’s Theorem prevents
proving nontrivial properties for arbitrary programs in the CCL
[18]. [22] solves graph grammars as constraint satisfaction prob-
lems to direct many-agent systems in a planar environment. In con-
trast, our approach focuses on systems with fewer agents that have
more correlated dimensions and uncertain action outcomes. Hy-
brid Automata [7] switch between continuous-domain controllers
in a Finite State Machine. Our approach uses a Context-Free gram-
mar. Stability of hybrid systems is analyzed by [34, 4]. We provide
alternative language-theoretic approaches to completeness and cor-
rectness in Sect. 6.1 and 6.2 allowing for more complicated per-
formance specifications. [13, 25, 23] use linear temporal logic to
formally describe uncertain multi-agent mobile robotics scenarios.
Such research discretizes the two dimensional environment of mo-
bile robots, requiring an exponential number of states in the degrees
of freedom (DOF). Our manipulation tasks involve a 7-DOF robot
interacting with 40 movable objects. Currently, discretization is not

Motion Parser

ζ0 ζ1 . . . ζk−1︸ ︷︷ ︸
history

ζk ζk+1 . . . ζn︸ ︷︷ ︸
future

tape

Robotic System η(z)

ζ

u

Figure 1: Operation of the Motion Parser.

computationally feasible. The Motion Grammar avoids discretiza-
tion through continuous domain semantics and discrete events that
represent the task.

The Motion Description Language (MDL) introduced by Brock-
ett [5] is a hybrid control representation that describes robot oper-
ation by switching through a sequence of continuous-valued con-
trollers. Applications of MDL require the strict assumption that
each controller in the string will take the robot to a known state ap-
propriate for the next controller. Real systems must contend with
uncertainty in the outcomes of their actions, particularly with re-
gard to discrete conditions and events. We address this challenge
in the Motion Grammar through online parsing.

Numerous other authors have built upon the Motion Description
Language. The Maneuver Automaton by Frazzoli [14] is able to
control a simulated model helicopter, demonstrating the capability
of this approach to handle systems with complicated dynamics; we
proved a detailed comparison with the Motion Grammar in Sect.
6.4.2. Egerstedt uses MDL to describe plan complexity in terms of
the length of plan string Σ [11], and provides another application
with MDLp for the autonomous control of puppets [12]. These
previous works, however, do not address the challenge of uncer-
tainty in many physical systems, and the plan string Σ will be inval-
idated if the system falls into an unexpected state. The MDLe [27],
works towards formalizing robot behaviors focusing on nonholo-
nomic mobile robots, and allows a basic response to uncertainty
through replanning. In contrast, our research extends the linguis-
tic approach to manipulation and addresses online uncertainty by
providing a complete policy.

When considering the Motion Grammar and MDL(e), it is im-
portant to observe the distinction between the language of specifi-
cation and the language of system. The specification language is
the set of strings used to generate the control program for the robot.
Strings expressed in this language are parsed off-line prior to ex-
ecution of the program. The system language is the set of strings
generated by the robot. This language is parsed online by the con-
trol program. In Discrete Event System theory, the system language
is described by the generator automaton [7]. Hristu-Varsakelis [19]
provides an improved formalization of MDLe and proves that the
MDL(e) specification language is Context-Free. We show that our
Motion Grammar provides a more computationally powerful rep-
resentation for the system language in Sect. 6.4.1.

3. THE MOTION GRAMMAR
The Motion Grammar represents the operation of a robotic sys-

tem by a Context-Free language. The grammar is used to generate
the Motion Parser which drives the robot as shown in Fig. 1.

Definition 1. The Motion Grammar, GM , is a tuple
GM = (Z ,Z,U ,η ,V,P,K,S):

Z space of robot sensor readings

Z set of tokens representing robot state

U space of robot commands

η : Z 7→ Z tokenizing function

V set of nonterminals

P set of productions

K set of semantic rules, each associated with one and only one production.

S ∈V starting nonterminal

Definition 2. The Motion Parser is a program that recognizes
the language specified by the Motion Grammar and executes the
corresponding semantic rules for each production.

Consider the illustration in Fig. 1. The output of the robot z is
discretized into a stream of tokens ζ for the parser to read. Based
on the sequence of tokens seen so far, the parser decides upon a
control action u to send to the robot. The token type ζ is used to
pick the correct production to expand at that particular step, and
the semantic rule for that production uses the continuous value z
to generate the command u. Thus, the Motion Grammar repre-
sents the language of robot sensor readings. The Motion Parser for
that grammar is an transducer that translates the language of sensor
readings into the language of controllers or actuator commands.

3.1 Motion Grammar Semantics
Semantics in the Motion Grammar are defined using attributes,

which are parameters associated with each token and nonterminal.
The attributes of tokens are continuous-valued variables such as
sensor readings. In some production A→ X0 . . .Xn, the associated
semantic rule k ∈ K calculates the values to assign to the attributes
of A and each Xi. These calculated values are functions of other
attributes in the production, and there are certain restrictions on
the allowable dependencies between attributes as detailed in Sect.
6.3.2. Ultimately, the parser reaches a semantic rule to calculate
the robot’s input u ∈U , and sends this value to the robot.

3.2 Languages, Systems, and Specifications
The robot and the controller are both mappings between the com-

mand and sensor spaces. They are transducers [18, p124].

Definition 3. The robot is a transducer f mapping from input
command u∈U to sensor reading z∈Z given internal state (q f , x f)
where q f is a discrete valued vector and x f ∈ℜm.

Definition 4. The controller is a transducer g mapping from sen-
sor reading z ∈Z to command u ∈ U with internal state (qg, xg)
where qg is a discrete valued vector and xg ∈ℜn.

The Motion Grammar represents a language that is produced by
the robot and consumed by the controller. The physical robotic sys-
tem, coupled with the tokenizer η produces a string of tokenized
sensor readings. The Motion Parser is the controller which uses
semantic rules, K, to determine continuous commands. Both dis-
crete and continuous information are passed between the robot and
the controller. Discrete events are generated by η , becoming part
of the string. The continuous portion of controller state xg comes
from sensor readings z∈Z or semantic rules K and is stored by the
parser in the attributes of tokens and nonterminals. In general, the
robot and controller may be of any language class. Since we use a
Context-Free language over Z in the Motion Grammar, qg can have
infinite dimension due to the stack of a pushdown-automaton.

In linguistic control approaches, a critical distinction must be
made between the language of the system and the language of the
specification. The system is the physical entity with which we are
concerned: the controller and the robot. The specification is the
description of how the controller and robot respond; it is a set of
mathematical symbols on paper or in a computer program. Both the
system and the specification can be described by formal languages.

Definition 5. The System Language, Lg, is the set of strings gen-
erated by the robot and parsed by the controller during operation.

Definition 6. The Specification Language, Ls, is the set of strings
that may describe the operation of the controller and robot.

These languages are related. The specification language is parsed
offline to generate the control program. The system language is
parsed online by the control program. The Motion Grammar is a
specification language that describes a Context-Free system.

We emphasize that the Motion Grammar is not a Domain Spe-
cific Language or Robot Programming Language [8, p339] but rather
the direct application of linguistic theory to robot control. The lan-
guage described by the Motion Grammar is that of the robotic sys-
tem itself. Our notation for this grammar, as presented in the fig-
ures, is a Syntax-Directed Definition (SDD) in Backus-Naur Form
[1, p304]. Nonterminals are represented between angle brackets 〈〉,
and tokens are represented between floor brackets bc.

4. GRAMMARS FOR ROBOTIC SYSTEMS
A Motion Grammar for any given task is developed based on the

task specification and the robot hardware to be used. The spaces
U and Z are the inputs and sensors that the robot possesses. The
token set Z should be designed as the collection of events, timeouts,
and discrete state that may occur during task execution. The system
designer must create the tokenizing function η to map from Z to
Z. Then, the nonterminals V and productions P can be created by
hierarchically decomposing the task into progressively simpler sub-
tasks until finally bottoming out in a continuously valued control-
loop. Once the productions have been created, the semantic rules
K for each production can be developed. These rules will perform
some calculations on the attributes of the tokens and nonterminals
in the production until the bottom of the control loops where the
calculated command is sent to the robot. Finally, the starting non-
terminal S is selected from V as the top level of the hierarchical
decomposition and the grammar is complete.

An example Motion Grammar for an arbitrary task is given in
Fig. 2. In this grammar, the overall task 〈Start〉 may be achieved
either by consecutively performing 〈Task1〉 and 〈Task2〉 or by per-
forming 〈Task3〉. 〈Task1〉 requires bevent1c to be valid and then
it goes to the control loop nonterminal 〈g1〉. The control loop
nonterminal 〈g1〉 can expand to (b1c) indicating that the terminat-
ing condition for the loop has been achieved, or it can expand to
(b0c〈κ1〉〈g1〉) which represents a single iteration of the loop. The
token b0c indicates to the parser that it must continue the loop. The
nonterminal 〈κ1〉 is used for its semantic rule which will calculate
and send the appropriate command to the robot. Finally, the non-
terminal 〈g1〉 appears causing the production to recurse on itself.
Once 〈Task1〉 is complete, the parser can move on to expanding
〈Task2〉 which requires either bevent2c to be valid, or it will exe-
cute 〈κ2〉. Alternatively to beginning with 〈Task1〉, the parser may
expand 〈Task3〉 if bevent3c is initially valid. In this case, it will
continue on to expand 〈g3〉 instead of 〈g1〉. Either way, the starting
nonterminal 〈Start〉 will be satisfied and the overall task achieved.

4.1 Tokenizing
While the token set Z may be regarded as opaque symbols in

some alphabet, it is more convenient to view the token as a tu-
ple of discrete variables (z1, . . . ,zn) and Z as the Cartesian prod-
uct over the tuple elements, z1× . . .× zn. Each of these variables
zi would represents the discretization of a particular sensor on the
robot. This is useful because a given production may only be re-
lated to a subset of the total sensors. For example, the force sensor
and encoders may be the only relevant sensors when moving an arm

'

&

$

%

〈Start〉 → 〈Task1〉〈Task2〉 | 〈Task3〉
〈Task1〉 → bevent1c〈g1〉
〈Task2〉 → bevent2c | 〈κ2〉
〈Task3〉 → bevent3c〈g3〉
〈g1〉 → b1c | b0c〈κ1〉〈g1〉
〈g3〉 → b1c | b0c〈κ3〉〈g3〉

Figure 2: Sample generic Motion Grammar.

1: procedure A
2: Choose a production for A, A→ X1 . . .Xn
3: for i = 1,n do
4: if nonterminal? Xi then call Xi
5: else if Xi = η (z(t)) then continue
6: else error
7: end if
8: end for
9: Execute semantic rule for A→ X1 . . .Xn

10: end procedure

Figure 3: Procedure for 〈A〉 in a recursive parser for GM

to contact an object; the camera is not used for the contact motion.
The parser is thus able to expand upon a given production for any
value of non-relevant variables. Besides making the productions
easier to express, this division is also efficient because it eliminates
the need to process data from sensors that are not needed to make
the current decision. Discretizing robot sensors into a tuple of dis-
crete values provides an efficient set of tokens for the parser.

4.2 Parsing
Once the Motion Grammar for the task is developed, it must be

transformed into the Motion Parser. For our proof-of-concept ap-
plication, we used a hand-written recursive descent parser, an ap-
proach also employed by GCC [16]. A recursive descent parser is
written as a set of mutually-recursive procedures, one for each non-
terminal in the grammar. An example of one of these procedures is
shown in Fig. 3, based on [1, p219]. Each procedure will fully ex-
pand its nonterminals via a top-down, left-to-right derivation. This
approach is a good match for the Motion Grammar’s top-down task
decomposition and its left-to-right temporal progression.

5. HUMAN-ROBOT GAME APPLICATION
We implemented and evaluated the performance of the Motion

Grammar on the Japanese game Yamakuzushi 1 (yama). This game
is similar to Jenga. In yama, a mountain of Shogi pieces is ran-
domly piled in the middle of a table as shown in Fig. 4. Each of the
two players tries to clear the pieces from the table. Each player is
only allowed to use one finger to move pieces. If the player causes
the pieces to make a sound, it becomes the other players turn. The
winner is the player who removes the most pieces.

In our implementation, a human plays against the Schunk LWA3
7-DOF robot arm. This robot has a 6-axis force-torque sensor at the
wrist that we used for force control. A Mesa Swiss Ranger allowed
to robot to locate the shogi pieces, and a microphone allowed it
to detect sounds indicating turn loss. We used a Kalman filter on
the force-torque sensor and both a median filter and a Kalman filter
on the Swiss Ranger. The robot used a speaker and text-to-speech
program to communicate with its human opponent. The lowest
levels of our grammatical controller operated at 1kHz.

1Videos online at http://golems.org/node/1224

MESA SR4000 Schunk LWA3 Robot End-Effector

Computer

Microphone
Mountain of Shogi Pieces

Figure 4: Our experimental environment for linguistic physical
human-robot games of Yamakuzushi.

Token Description

bα ≤ t < βc Within time Range
bcontactc E.E. touching piece
bno contactc not touching piece
bdestinationc at traj. end
bhuman piecec removed by human
brobot piecec removed by robot
bclearc board cleared
bsoundc noise removing piece
bquietc no noise made
binspacec human in workspace
b¬inspacec not in workspace
bpointc element of point cloud

(a) Tokens

Attr. Description

Sensor Driven
t Current Time
x Act. Robot/Point Pos.
f Act. E.E. Force

Inherited/Synthesized
tα Duration or Timeout
xr Ref. Robot Pos.
ẋr Ref. Robot Vel.
x0 Traj. Start Pos.
xn Traj. End Pos.
fr Ref. E.E. Force

(b) Attributes

Figure 5: Tokens, Attributes for the Yama Motion Grammar

5.1 Tokens and Attributes
The tokens and attributes used by the yama grammar encode the

hybrid system dynamics. Both are summarized in Fig. 5. The tok-
enizer η produces each token ζ by thresholding the current sensor
reading. The Motion Parser uses tokens to determine syntactically
correct expansions of productions according to the grammar.

While tokens encode discrete events, attributes represent the con-
tinuous system state. Some attributes are obtained directly from the
sensors: x from encoders, f for the force-torque sensor, t from the
clock. The rest are derived according to semantic rules. Attributes
are passed between the tokens and nonterminals in the grammar
to implement the continuous domain semantics. Hybrid control is
achieved by combining the discrete decisions of the Motion Parser
with continuous functions defined by the semantics.

5.2 Semantic Rules
Semantic rules are procedures that are executed when the parser

expands a production. In yama, these rules assign updated sen-
sor readings to attributes, maintain previously computed attributes,
determine new targets for the controller and send control com-
mands. Attribute maintenance is achieved through synthesis in
child productions and inheritance from the parent production be-
ing expanded and from the left-siblings of each nonterminal. In
this paper, we give one key example of robot control through se-
mantic rules.

The SDD presented in Fig. 6 illustrates the semantics of trape-
zoidal velocity profiles. Expanding 〈g′〉 yields distinct semantic
rules depending on t, the time attribute of the current nonterminal.
For each stage of the trajectory we target distinct reference posi-
tions and velocities. The semantic rule for 〈g〉 defines the control
output as a target velocity, u, based on the references provided by
expanding 〈g′〉 and the current force attribute. This demonstrates
how the continuous domain control of physical systems can be en-
coded in the semantics of a discrete grammar.

PRODUCTION SEMANTIC RULES
〈g〉 → 〈g′〉 u = ẋr−Kp(x− xr)−K f (f − fr)
〈g′〉 → bt < 0c xr = 0, ẋr = 0
〈g′〉 → b0≤ t < t1c xr = x0 +

1
2 ẍmt2, ẋr = tẍm

〈g′〉 → bt1 ≤ t < t2c xr = x0 +
1
2 ẍmt2

1 + ẋm(t− t1), ẋr = ẋm
〈g′〉 → bt2 ≤ t < tnc xr = xn− 1

2 ẍm(tn− t)2, ẋr = ẋm + ẍm(t2− t)
〈g′〉 → btn < tc xr = 0, ẋr = 0

Figure 6: Syntax-Directed Definition that encodes impedance
control over trapezoidal velocity profiles.#

"

!
〈touch〉〈touch′〉 Goal〈g〉〈g′〉

bno contactc

bεc

bt≤ tnc

bt > tnc

b∗c

bεc

bcontactc

(a) Finite State Machine Representation�

�

�

�
〈touch〉 → bcontactc

| bno contactc〈touch′〉〈touch〉
〈touch′〉 → bt > tnc | bt≤ tnc〈g〉〈touch′〉

(b) Equivalent Motion Grammar Fragment

Figure 7: Illustration of control for piece touching.

5.3 Touching Pieces
The Finite State Machine in Fig. 7(a) could be used to make

the robot touch a shogi piece. This state machine is equivalent
to the right regular grammar in Fig. 7(b). In the grammar, the
tokenizing function η applies a threshold to the force-torque sen-
sors and produces bcontactc if the end-effector forces exceed the
threshold or bnocontactc otherwise. To expand the 〈touch〉 nonter-
minal, the parser consumes a bcontactc and returns, or it consumes
a bnocontactc, moves down a small increment using the trapezoidal
velocity profile in 〈touch′〉 and 〈g〉, and recurses on 〈touch〉. This
behavior is mirrored by the state transitions in Fig. 7(a).

We implemented this grammatical controller for touching shogi
pieces on the LWA3 and compared it to a pure continuous-domain
impedance controller. Due to the large physical constants of the
LWA3, we implemented our impedance controller on top of a ve-
locity controller. This approach has the potential for oscillation, es-
pecially when gains are large, yet even under these circumstances,
the grammatical controller achieved superior performance. The
impedance controller in Fig. 8(a) with an appropriate gain is able
to make contact with the piece, but it does suffer from some oscil-
lation and overshoot. An impedance controller with high gains in
Fig. 8(b) has severe oscillation and very poor performance. The
grammatical controller in Fig. 8(c) has both less overshoot and less
oscillation than the purely continuous impedance controller. Addi-
tionally, we also observed the grammatical controller to be much
more robust to sensing errors. If we estimated the height of a piece
incorrectly, the impedance controller would often completely fail
to make contact due to limited ability to increase gains; however,
the grammatical controller would still be able to find the piece.

5.4 Sliding and Reacquiring Lost Pieces
The grammar in Fig. 9 describes how the robot slides pieces and

how it can reacquire pieces it has lost. This grammar again uses the
trapezoidal velocity profile 〈g〉 and bcontactc and bno contactc is
for the grammar in Fig. 7(b). The tokenizer η supplies bdestinationc

#

"

!

〈slide〉 → bcontactc〈g〉〈slide〉
| bno contactc〈g〉〈slide〉
| bdestinationc
| 〈reacquire〉bcontactc〈g〉〈slide〉

〈reacquire〉 → bno contactc〈touch〉

Figure 9: Grammar fragment to reacquire lost pieces.

(a) contact (b) no contact (c) destination

-10

-8

-6

-4

-2

 0

 2

 0 5 10 15 20 25 30 35

F
or

ce
 (

N
)

Time (s)

X
Y
Z

down

(a) contact

(b) no contact

contact

(c) destination

(d) Forces at the robot end-effector during grammar execution.

Figure 10: Images and data gathered by applying the sliding
grammar in Fig. 9 when contact is lost.

when robot has moved the piece to the desired location. If the
robot momentarily loses contact with the piece, it will continue
expanding 〈slide〉; however, when the contact loss is long enough
for the robot to move past the piece, it will have to backtrack to
the last contact position to reacquire it. This action is performed
by 〈reacquire〉. Following this grammar allows the robot to move
pieces across the table and recover any pieces that it loses.

Our implementation of this grammar on the LWA3 slides pieces
and recovers them after any contact loss. As the robot moves through
the sequence in Fig. 10, it uses the end-effector forces shown in
Fig. 10(d) to make its decisions regarding piece contact. At 6s, the
robot begins moving down to touch the piece. It acquires the pieces
at 6.8s, Fig. 10(a) and begins sliding. At 10.8s, Fig. 10(b), it loses
contact with the piece. Recognizing this, the robot backtracks, and
again makes contact with the piece at 18.5s. It then continues slid-
ing the piece, reaching the destination at 28.3s, Fig. 10(c).

5.5 Selecting Target Pieces
The grammar in Fig. 5.5 describes how the robot chooses a target

piece to move. The Swiss Ranger provides a point cloud from the
stack of pieces, Fig. 11(a). From this point cloud, a set of planes is
progressively built based on the distance between the test point and
the plane and on the angle between the plane normal and the nor-
mal of a plane in the region of the test point. Each of these planes
is a potential target for the robot. The precedence of these planes
is based on height above the ground, a clear path to the edge of the
table, and whether the piece may be supporting stacked neighbor-
ing pieces. The parser will select the highest precedence plane as
the target to move, Fig. 11(b).

5.6 Deciding the Winner
An example of a Context-Free system language is deciding the

winner of the game. The grammar fragment for this task is shown in
Fig. 12. This grammar will count the number of pieces removed by

-16
-14
-12
-10

-8
-6
-4
-2
 0
 2

 0 0.5 1 1.5 2 2.5 3

F
or

ce
 (

N
)

Time (s)

X
Y
Z

(a) Impedance

-16
-14
-12
-10

-8
-6
-4
-2
 0
 2

 0 0.5 1 1.5 2 2.5 3

Time (s)

X
Y
Z

(b) High Gain Impedance

-16
-14
-12
-10

-8
-6
-4
-2
 0
 2

 0 0.5 1 1.5 2 2.5 3

Time (s)

X
Y
Z

(c) Grammatical

Figure 8: Piece Touching with Impedance and Discrete Control Strategies

(a) Pieces (b) Planes�

�

�

�
〈act〉 → 〈target〉〈touch〉〈slide〉

〈target〉 → 〈plane〉0 | . . . | 〈plane〉n
〈planei〉 → bpointcj | bpointcj 〈planei〉

(c) Motion Grammar Fragment

Figure 11: Deciding target piece and direction.

'

&

$

%

〈winner〉 → 〈draw〉 | 〈robot〉 | 〈human〉
〈draw〉 → ε

| brobotpiecec〈draw〉bhumanpiecec〈draw〉
| bhumanpiecec〈draw〉brobotpiecec〈draw〉

〈robot〉 → 〈draw〉brobotpiecec〈draw〉
| 〈draw〉brobotpiecec〈robot〉

〈human〉 → 〈draw〉bhumanpiecec〈draw〉
| 〈draw〉bhumanpiecec〈human〉

Figure 12: Grammar fragment to decide winner

'

&

$

%

〈winner〉

〈draw〉

brc 〈draw〉

brc 〈draw〉

ε

bhc 〈draw〉

ε

bhc 〈draw〉

bhc 〈draw〉

ε

brc 〈draw〉

ε

Figure 13: Parse tree for winner decision problem, bhc ≡
bhumanpiecec, brc ≡ brobotpiecec

'

&

$

%

〈game〉 → 〈robot turn〉bclearc〈winner〉
| 〈robot turn〉〈humanturn〉bclearc〈winner〉
| 〈robot turn〉〈humanturn〉〈game〉

〈robot turn〉 → 〈act〉bquietc〈robot turn〉
| 〈act〉bsoundc
| bclearc

〈humanturn〉 → 〈waitsound〉〈waitsafe〉
〈waitsound〉 → bsoundc

| bclearc
| bquietc〈waitsound〉

〈waitsafe〉 → binspacec〈waitsafe〉
| b¬inspacec

Figure 14: Complete Yama Grammar. This is the remaining
set of productions used in the game.

the human and the robot. The 〈draw〉 nonterminal serves to match
up a piece removed by the human and a piece removed by the robot.
The 〈robot〉 and 〈human〉 nonterminals consume the extra tokens
for pieces removed by the robot or the human, indicating that player
is the winner. An example parse tree for a draw condition is given in
Fig. 13. This parse tree demonstrates how each 〈draw〉matches one
brc and one bhc token which requires a Context-Free language [18,
p125]. This solution to counting problem for deciding the winner
demonstrates the advantage of using a Context-Free model for the
Motion Grammar.

5.7 Complete Game
The remaining productions to implement a full game of Yamakuzushi

are given in Fig. 14. A game consists of alternating robot and hu-
man turns until the board is clear. During the 〈robot turn〉, it will
repeatedly 〈act〉 to remove pieces until it causes bsoundc by making
a noise exceeding the preset threshold or until it clears the board.
During the 〈humanturn〉, the robot will simply wait until it detects
a bsoundc or sees that the board has been cleared. After the human
makes a bsoundc, the robot will wait until the human is out of the
workspace before it begins its turn.

6. ANALYSIS
In this section, we investigate several analytical properties of the

Motion Grammar. Sect. 6.1 demonstrates grammar Complete-
ness ensuring that the robot will respond to all situations. Sect.
6.2 presents one approach to proving Correctness, ensuring that
the grammatically-controlled system satisfies a target constraint.
Next, we explain the necessary properties of the Motion Grammar
that arise from the dynamic, temporal constraints of online pars-

ing as opposed to the static inputs given to traditional compilers.
Finally, Sect. 6.4 compares the Motion Grammar and two related
approaches, MDLe and the Maneuver Automaton.

One key element of our analysis is that Motion Grammars use a
Context-Free System Model. This representation allows for an ap-
propriate balance between power of the computational model and
provability of the resulting system. Regular languages are a sim-
pler representation whose response can be just as easily proven, but
they are very limited in what they can represent. Context-Sensitive
Languages are somewhat more powerful than Context-Free, but the
Context-Sensitive decision problem is PSPACE-Complete. Recursively-
enumerable languages are more powerful, but by Rice’s Theorem,
any nontrivial property of a Turing Machine is unprovable [18,
p188]. Since Context-Free languages maintain provable properties
and can be parsed in polynomial time, they are an appropriate rep-
resentation for robotic systems that must operate in real-time and
whose behavior should be provably complete.

6.1 Completeness
By formalizing the hybrid control problem as a grammar that

recognizes the language of the robotic system, we can precisely
determine what situations we are able to handle. This allows us to
guarantee that the robot will never give up.

Definition 7. A Motion Grammar GM is complete, complete{GM},
if and only if it will direct the robot to take some action in all pos-
sible circumstances.

PROPOSITION 1. Let LGM be the set of all strings accepted by
GM . Let Lg be the set of all strings produced by the robotic system.
Then complete{GM} ⇐⇒ Lg ⊆ LGM

PROOF. Suppose that complete{GM}∧∃` ∈ Lg, ` /∈ LGM . Be-
cause ` /∈ LGM , the grammar will give a syntax error if it encounters
`. If the robot produces `, the grammar could not direct the robot
and thus ¬complete{GM}. This is a contradiction. Now suppose
that ¬complete{GM}∧∀` ∈ Lg, ` ∈ LGM . Since GM accepts every
` ∈ Lg, there is no possibility that the grammar couldn’t handle. So
complete{GM}. This is a contradiction.

Now we give one method for proving completeness of a Mo-
tion Grammar. Though the general subset relation between two
Context-Free languages is undecidable [18, p203], we can take ad-
vantage of the constraints imposed by continuous-domain dynam-
ics to decide complete{GM}. This approach combines the First
and Follow sets used in compiler theory [1, p220] and the Invariant
Set Theorem from Lyapunov theory [31, p68] to show that the sys-
tem will always remain in a region that is defined by the grammar.
For this purpose, we use a variation on the conventional follow(A)
which is based on unions and instead base our xfollow(A) on the
intersections of tokens that may follow A.

Definition 8. xfollow(A) is the intersection of all tokens that may
follow nonterminal A in the grammar. Specifically, xfollow(S) = $
where $ indicates the end of the input string and S is not a child
in any production. For all A 6= S, xfollow(A) is the intersection
of first(β) for all productions B→ αAβ and of xfollow(B) for all
productions B→ αA.

LEMMA 2. If a top-down parser receives token ζ after expand-
ing some production A→ X1 . . .Xn and ζ ∈ xfollow(A), then ζ will
not generate a syntax error.

PROOF. Since ζ ∈ xfollow(A), all parent productions of A must
be able to accept ζ following their expansion of A. Thus ζ cannot
cause a syntax error.

THEOREM 3. For Motion Grammar GM in Chomsky normal
form with productions p = (A→ χ) ∈ P, let

• S be the starting nonterminal
• X = ℜn be the continuous, finite-dimensional, state of the

robot and x ∈X
• hp(x) : X 7→Z
• R0(p) = {x | η(hp(x)) ∈ first(χ)}
• R1(p) = {x | η(hp(x)) ∈ xfollow(A)}
• ζ0 be the first token received by the Motion Parser.

If, ζ0 ∈ first(S) and for all p ∈ P, R0(p) ⊆R1(p) and R0(p) or
R1(p) is an Invariant Set, then complete{GM}.

PROOF. We prove this theorem inductively. For the inductive
case, the Motion Parser expanding some p ∈ P must start with x ∈
R0(p). If R0(p)⊆R1(p) and R0(p) or R1(p) is an Invariant Set,
then at the end of expanding p, the system will have x ∈ R1(p).
This will generate a subsequent token ζ ∈ xfollow(A) and Lemma
2 shows that this will not cause a syntax error. For the base case, the
Motion Parser is given ζ0 as the first token. Since ζ0 is in first(S),
it will not generate a syntax error.

Theorem 3 shows us that a system is fully represented by a Mo-
tion Grammar. If our Motion Grammar is not complete, we can
fix this by modifying semantic rules K to create the invariant set
property or by creating more productions in P to respond to the
additional cases. When the grammar is complete, it guarantees a
response to all situations and additionally lets us use the discrete
syntax to represent the system. We use the syntax to guarantee that
the system is correct.

6.2 Correctness
In addition to ensuring that the robot takes some action for all

circumstances, it is also important to evaluate the correctness of
the action. We define the correctness of a language specified by the
Motion Grammar, LGM , by relating it to a constraint language, Lr.
While LGM for a given problem integrates all problem subtasks, as
shown in Sect. 5, the constraint language targets correctness with
respect to a specific criterion. Criteria can be formulated for general
tasks including: safe operation, target acquisition and the mainte-
nance of desirable system attributes. By judiciously choosing the
complexity of these languages, we can evaluate whether or not all
strings generated during execution are also part of language Lr.

Definition 9. A Motion Grammar GM is correct with respect to
some constraint language Lr when all strings in the language of GM
are also in Lr: correct{GM ,Lr} ⇐⇒ LGM ⊆ Lr.

The question of correct{GM ,Lr} is only decidable for certain
language classes of LGM and Lr. Hence, the formal guarantee on
correctness is restricted to a limited range of complexity for both
systems and constraints. We prove decidability and undecidabil-
ity for combinations of Regular, Deterministic Context-Free, and
Context-Free Languages.

LEMMA 4. Let LR be the Regular set, LD be the Deterministic
Context-Free set, and LC be the Context-Free set. R ∈ LR, D ∈
LD, and C ∈LC. Then,

1. C ⊆C′ is undecidable. [18, p203]
2. R⊆C is undecidable. [18, p203]
3. C ⊆ R is decidable. [18, p204]
4. R⊆ D is decidable. [18, p246]
5. D⊆ D′ is undecidable. [18, p247]

COROLLARY 5. Based on LR ⊂ LD ⊂ LC, the results from
[18] extend to the following statements on decidability:

1. D⊆ R and R⊆ R are decidable.
2. D⊆C undecidable.
3. C ⊆ D is undecidable.

Combining these facts about language classes, the system designer
can determine which types of languages can be used to define both
the grammars for specific problems and general constraints.

THEOREM 6. The decidability of correct{GM ,Lr} for Regular,
Deterministic Context-Free, and Context-Free Languages is speci-
fied by Fig. 15.

Lr ∈LR Lr ∈LD Lr ∈LC
LGM ∈LR yes yes no
LGM ∈LD yes no no
LGM ∈LC yes no no

Figure 15: Decidability of correct{GM ,Lr} by language class.
PROOF. Each entry in Fig. 15 combines a result from Lemma 4

or Corollary 5 with Definition 9. The algorithms that perform each
subset evaluation and therefore the evaluation of correct{GM ,Lr}
are given in [18].

Theorem 6 ensures that we can prove the correctness of a Motion
Grammar with regard to any constraint languages in the permitted
classes. We are limited to Regular constraint languages except in
the case of a Regular system language which allows a Determinis-
tic Context-Free constraint. Regular constraint languages may be
specified as Finite Automata, Regular Grammars, or Regular Ex-
pressions since all are equivalent. Furthermore, since we can deter-
mine the complement of any Regular or Deterministic Context-Free
language, we can specify constraints in terms of events that should
never happen, LGM ⊆ L̄e. Both positive and negative constraints al-
low existing algorithms to guarantee that a Motion Grammar-based
system is safe and reliable.

6.3 Time and Semantics
Next we study the properties of the Motion Grammar that arise

from the online parsing of the system language. While a translat-
ing parser such as a compiler is typically given its input as a file, a
Motion Parser must act token-by-token continually driving the sys-
tem. This temporal constraint means the Motion Grammar must
decide using only the single token of lookahead derived from the
current sensor reading. It cannot lookahead to future tokens that
have not happened, and it cannot backtrack to undo actions already
taken. This restriction affects the type of parser we may use and the
allowable ordering of attribute semantics.

6.3.1 Selecting Productions and Semantic Rules
First we compare the Motion Grammar to the LL(1) class of

grammars. LL(1) grammars can be parsed by recursively descend-
ing through productions, picking the next production to expand us-
ing only a single token of lookahead and without backtracking [1,
p222]. While we could satisfy the Motion Grammar’s temporal
constraint by restricting ourselves to an LL(1) grammar, we can
actually relax that restriction slightly. The real problem is not that
the Motion Parser must immediately know which production it is
expanding, but that it must immediately provide some command to
the robot. Thus the parser may use additional lookahead, but only
if all productions it is deciding between have identical semantic
rules. This way, the parser can immediately execute the semantic
rule, and use some additional lookahead to figure which production
it is really expanding. We describe this property as Semantically
LL(1). This is important because a pure LL(1) grammar must un-
ambiguous; however, by requiring LL(1) only in semantics, we are
also able to use certain ambiguous grammars.

Definition 10. A grammar is Semantically LL(1) if for all strings
in its language, the correct semantic rule to execute can be deter-
mined using a single token of lookahead and without backtracking.

THEOREM 7. A Motion Grammar must be Semantically LL(1).

PROOF. The Motion Parser derived from the Motion Grammar,
GM , must be able to immediately provide the system with an input
command u ∈ U in response to each token, and it cannot change
the value of commands already sent. Suppose that the GMwas not
Semantically LL(1). This would mean it could use multiple tokens
of lookahead or backtrack before deciding on a semantic rule to cal-
culate u. Since u must be known before more tokens are accepted
and previous u values cannot be changed, this a contradiction. Thus
GM must be Semantically LL(1).

When designing our Motion Grammar, we must ensure that the
correct semantic rule can be selected without any additional looka-
head. For productions where this is not the case, we must either re-
work the grammar or instruct the parser as to the appropriate prece-
dence levels so that it can resolve the ambiguity.

6.3.2 Attribute Inheritance and Synthesis
Now we consider the structure of the attribute semantics in the

Motion Grammar. In our SDD, the attributes of some given non-
terminal will be calculated from the attributes of other tokens and
nonterminals; this introduces a dependency graph into the syntax
tree. We must ensure that the dependency graph has no cycles or
we will not be able to evaluate the SDD [1, p310]. The temporal na-
ture of the Motion Grammar constrains the attribute dependencies
even further; during parsing, we only have access to information
from the past because the future has not happened yet. Attributes
can be described as either synthesized or inherited based on their
dependencies. Synthesized attributes depend on the children of the
nonterminal while inherited attributes depend on the nonterminal’s
parent, siblings, and other attributes of the nonterminal itself. The
temporal constraint of the Motion Grammar corresponds to a par-
ticular class of SDDs called L-attributed definitions for the left-to-
right dependency chain. A nonterminal X in an L-attributed defi-
nitions may only have attributes that are synthesized, or inherited
with dependencies on inherited attributes of X’s parent, attributes
of X’s siblings that precede it in the production, or on X itself in
ways that do not result in a cycle [1, p313].

THEOREM 8. A Motion Grammar must have L-attributed se-
mantics.

PROOF. We must determine the attributes in a single pass be-
cause parsing is online, so the past cannot be changed, and the fu-
ture is unknown. Let the inherited attributes of nonterminal V be
V.h, and let its synthesized attributes be V.s. For all productions
p = A→ X1X2 . . .Xn, consider the attributes of Xi. While expand-
ing Xi, A.h are known. All X j, j < i in this production have al-
ready been expanded because they represent past action, so X j.h
and X j.s are also known. However, Xk, k > i represent future ac-
tions, so Xk.h and Xk.s are unknown. This also means that A.s is
unknown because its value may depend on Xk.h and Xk.s. Conse-
quently, Xi.h may only depend on A.h, X j.h, and X j.s. Xi.s may
depend on from its children because they will be known after Xi
has been expanded. These constraints on attributes synthesis and
inheritance correspond to L-attributed definitions.

6.4 Relationship with Existing Methods
The Motion Grammar builds on a number of advances in lin-

guistic control. This section relates our approach to two related
methods: MDLe and Maneuver Automata.

procedure MDLE-TO-FA(Σ,B′,U)
for i = 0,n do

Create state si ∈ S
end for
for all ξ j ∈ B′ do

Create tokens
⌊
ξj = 0

⌋
∈ E and

⌊
ξj = 1

⌋
∈ E

end for
for i = 0,n do

if σi = ξ j ∈ B′ then

Create transition
(

si
ξ j=0
−−−→ sk

)
∈ d,

where σk is the b(c matching the b)c following σi
for all σp = ξr ∈ B′ nested within b(ck and b)ci+1 do

Create transition
(

si
ξ j=1
−−−→ si+1

)
∈ d

end for
else

Create transition
(

si
ε−→ si+1

)
∈ d.

end if
end for

end procedure
Figure 16: Convert MDLe String to Finite Automaton

Σ = (u,ξ) (u , ξ)
ε ε ε ξ = 1

ξ = 0

Σ = ((u1,ξ1)(u2,ξ2),ξ3) (

(u1 , ξ1)
ε ε ε ξ1 = 1

ξ1 = 0
ε

(u2 , ξ2)
ε ε ε

ξ2 = 1

ξ2 = 0

ε

,

ξ3)

ξ3 = 0

ξ3 = 1

ξ3 = 1

ε

ε

ξ3 = 1

Figure 17: Example Transform: MDLe to Finite Automata

6.4.1 MDLe
The MDLe is a Specification Language with a Context-Free gram-

mar [19]. Each string in the MDLe represents some control pro-
gram. Each of those control programs can parse only a Regu-
lar Language. This is in contrast to the Motion Grammar which,
describes the System Language for a Context-Free System. Each
string in MDLe represents a control program that recognizes a reg-
ular system language.

THEOREM 9. The System Language recognized by an MDLe
string is Regular.

PROOF. Given that an MDLe controller is represented by a string
in the MDLe language, we prove that the resulting System Lan-
guage is regular by providing an algorithm to transform any MDLe
string, Σ, into a Finite Automaton, A = (S,E,d) that accepts the
System Language Lg. MDLe string Σ is composed of tokens b(c,
b)c, b,c, u ∈U , and ξ ∈ B′. The algorithm in Fig. 16 creates the
automaton A corresponding to Σ.

The resulting Finite Automaton encodes the evaluation rules for
the MDLe string. Since we can transform Σ to a Finite Automaton,
Σ must recognize a Regular System Language.

Two examples of this conversion procedure are shown in Fig. 17,
one simple case and one more complicated case. Unlike the trans-
formation to Hybrid Automata in [19], we do not restrict repeated
controllers in Σ to a single state in our system language Finite Au-
tomata. Notice also that there is ambiguity in the case of simultane-
ously active interrupt functions. [19] specifies that this is resolved
via precedence among the different interrupts.

1: procedure Go-TO-Gn(Go)
2: for all 〈qi〉 in Go do
3: Create a production 〈q′i〉 → κqi 〈q′i〉 in Gn

where κqi is a semantic rule for the controller
to keep the system in the trim state.

4: end for
5: for all tokens bσic in Go do
6: Create production 〈σ ′i 〉 → bξi = 1c

where ξi is an interrupt for the maneuver
7: Create production 〈σ ′i 〉 → bξi = 0cκσi 〈σ ′i 〉 in Gn

where κσi is the semantic rule for the controller
8: end for
9: for all productions 〈qi〉 →

⌊
σj
⌋
〈qk〉 in Go do

10: create a production 〈q′i〉 → 〈σ ′j 〉〈q′k〉 in Gn.
11: end for
12: end procedure

Figure 18: Maneuver Automaton Conversion

q1 q2

q3

σ1

σ2σ3

〈q1〉 → bσ1c〈q2〉
〈q2〉 → bσ2c〈q3〉
〈q3〉 → bσ3c〈q1〉

(a) Offline Grammar

〈q′1〉 → κq1 〈q
′
1〉 | 〈σ ′1〉〈q′2〉

〈σ ′1〉 → bξ1 = 0c
| bξ1 = 1cκσ1 〈σ

′
1〉

〈q′2〉 → κq2 〈q
′
1〉 | 〈σ ′2〉〈q′3〉

〈σ ′2〉 → bξ2 = 0c
| bξ2 = 1cκσ2 〈σ

′
2〉

〈q′3〉 → κq3 〈q
′
1〉 | 〈σ ′3〉〈q′1〉

〈σ ′3〉 → bξ3 = 0c
| bξ3 = 1cκσ3 〈σ

′
3〉

(b) Online Grammar

Figure 19: Maneuver Automaton→ Online Grammar.

COROLLARY 10. Every MDLe string can be translated to a
Motion Grammar.

PROOF. The Motion Grammar is a Context-Free grammar for
the System Language, and we can translate every MDLe string to
a Finite Automaton accepting the System Language. Finite Au-
tomata are equivalent to Regular Grammars. Regular Grammars
are a subset of Context-Free Grammars.

From Corollary 10, we also observe that the Motion Grammar
can control a broader class of systems than the MDLe. MDLe
controllers can only accept regular languages while the Motion
Grammar can accept Context-Free languages. Because Regular
languages are a subset of Context-Free languages, the Motion Gram-
mar can describe systems that the MDLe cannot.

6.4.2 Maneuver Automata
There are some important similarities between the Maneuver Au-

tomaton and the Motion Grammar. The Maneuver Automaton rep-
resents a hybrid system moving between a set of trim trajectories
q ∈ Q using a motion library of maneuvers σ ∈ Σ. This system
is represented as a Finite Automaton with states Q and tokens Σ.
It is possible to transform this representation into a grammar suit-
able for online control of the system. An example of this process
is shown in Fig. 19. First, the Maneuver Automaton, Fig. 19(a) is
rewritten as a Regular Grammar, Go in Fig. 19(a), with one produc-
tion of the form 〈qi〉 →

⌊
σj
⌋
〈qk〉 to indicate each transition in the

automaton. We then transform this offline grammar into an online
grammar Gn according the algorithm in Fig. 18.

We also note that an arbitrary Maneuver Automaton cannot be
directly transformed into a Motion Grammar. The Maneuver Au-
tomaton does not include information about how long to hold in
trim states q or when to begin maneuvers σ . Thus, it does not
represent a policy and it can be transformed only to an ambigu-
ous grammar for the system language. Since the resulting system

language grammar is not Semantically LL(1), Theorem 7 indicates
that it cannot be a Motion Grammar.

Even though we cannot directly transform a Maneuver Automa-
ton to a Motion Grammar, this transformation is possible by pro-
viding some additional information necessary for LL(1) Semantics.
Establishing precedence levels between the ambiguous productions
or extending the system representation to include tokens, such as
timeouts for coasting times, indicating when to begin maneuvers
are possible ways to resolve the ambiguity. By augmenting the
Maneuver Automaton with the additional information to achieve a
policy, we can then derive a corresponding Motion Grammar.

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented a novel approach to planning, percep-

tion, and control using grammars. Our Motion Grammar demon-
strates that you can have both formal guarantees and computation-
ally efficient performance, crucial properties in the development of
robots that are safe and reliable. We showed how the Motion Gram-
mar can be used to prove a system will be robust to uncertainty,
responding to every possible situation, and we described how to
develop such a complete grammar. We showed how to provide
guarantees on the correct operation of the system. We also ex-
plained some particular constraints that arise in applying grammars
to time-based physical systems. Finally, we have demonstrated the
efficacy of this approach by developing a physical robotic system
to play the game Yamakuzushi against a human opponent.

This work opens the way for many extensions to enhance the
guarantees, expressiveness, and power the system through further
use and refinement of our Motion Grammar. A parser generator
could be developed to automatically produce a Motion Parser from
the Motion Grammar, handling the Motion Grammar’s deep recur-
sion and LL(1) Semantics. Applying type theory could provide for
stricter definitions and guarantees. There are also restricted classes
of Context-Sensitive languages that can be efficiently parsed if the
Context-Free model for the Motion Grammar should be insuffi-
ciently powerful for some problem [20]. The hierarchical struc-
ture exposed in the grammar could also be combined with MDP
learning algorithms that exploit this structure [9]. We will continue
exploring these approaches to improve the capabilities and guaran-
tees of the resulting system.

8. ACKNOWLEDGMENTS
The authors thank Magnus Egerstedt for his insight throughout

the development of our work on the Motion Grammar.

9. REFERENCES
[1] AHO, A., LAM, M., SETHI, R., AND ULLMAN, J. Compilers:

Principles, Techniques, & Tools, 2nd ed. Pearson, 2007.
[2] ARKIN, R. Behavior-Based Robotics. MIT press, 1999.
[3] ARKIN, R. Governing lethal behavior: embedding ethics in a hybrid

deliberative/reactive robot architecture. In Proceedings of the 3rd
ACM/IEEE international conference on Human robot interaction
(2008), ACM, pp. 121–128.

[4] BRANICKY, M. Multiple Lyapunov functions and other analysis
tools for switched and hybrid systems. IEEE Transactions on
Automatic Control 43, 4 (1998), 475–482.

[5] BROCKETT, R. Formal Languages for Motion Description and Map
Making. Robotics 41 (1990), 181–191.

[6] BROOKS, R. A robust layered control system for a mobile robot.
IEEE journal of robotics and automation 2, 1 (1986), 14–23.

[7] CASSANDRAS, C. Discrete-Event Systems, 2nd ed. Springer, 2008.
[8] CRAIG, J. Introduction to Robotics: Mechanics and Control, 3rd ed.

Pearson, 2005.

[9] DIETTERICH, T. Hierarchical reinforcement learning with the
MAXQ value function decomposition. Journal of Artifcial
Intelligence Research 13 (2000), 227–303.

[10] EARLEY, J. An efficient context-free parsing algorithm.
Communications of the ACM 13, 2 (1970), 94–102.

[11] EGERSTEDT, M. Motion Description Languages for Multi-Modal
Control in Robotics. Control Problems in Robotics (2002), 74–90.

[12] EGERSTEDT, M., MURPHEY, T., AND LUDWIG, J. Motion
Programs for Puppet Choreography and Control. Hybrid Systems:
Computation and Control (2007), 190–202.

[13] FAINEKOS, G., KRESS-GAZIT, H., AND PAPPAS, G. Hybrid
controllers for path planning: a temporal logic approach. Proceedings
of the 2005 IEEE Conference on Decision and Control (2005).

[14] FRAZZOLI, E., DAHLEH, M., AND FERON, E. Maneuver-Based
Motion Planning for Nonlinear Systems with Symmetries. IEEE
Transactions on Robotics 21, 6 (2005), 1077–1091.

[15] FU, K. Syntactic Pattern Recognition and Applications. Prentice
Hall, 1981.

[16] GCC 3.4 Release, July 2010.
http://gcc.gnu.org/gcc-3.4/changes.html.

[17] HAN, F., AND ZHU, S. Bottom-up/top-down image parsing by
attribute graph grammar. International Conference on Computer
Vision 2 (2005).

[18] HOPCROFT, J., AND ULLMAN, J. Introduction to automata theory,
languages, and computation. Addison-wesley Reading, MA, 1979.

[19] HRISTU-VARSAKELIS, D., EGERSTEDT, M., AND
KRISHNAPRASAD, P. On the structural complexity of the motion
description language MDLe. In 42nd IEEE Conference on Decision
and Control, 2003. Proceedings (2003), pp. 3360–3365.

[20] JOSHI, A., VIJAY-SHANKER, K., AND WEIR, D. The convergence
of mildly context-sensitive grammar formalisms. Foundational issues
in natural language processing (1991), 31–81.

[21] KLAVINS, E. A language for modeling and programming
cooperative control systems. In IEEE international conference on
robotics and automation (2004), vol. 4, IEEE; 1999, pp. 3403–3410.

[22] KLAVINS, E., GHRIST, R., LIPSKY, D., DEPARTJMENT, E., AND
SEATTLE, W. A grammatical approach to self-organizing robotic
systems. IEEE Transactions on Automatic Control 51, 6 (2006),
949–962.

[23] KLOETZER, M., AND BELTA, C. Automatic deployment of
distributed teams of robots from temporal logic motion
specifications. IEEE Transactions on Robotics 26, 1 (2010), 48–61.

[24] KOUTSOURAKIS, P., SIMON, L., TEBOUL, O., TZIRITAS, G., AND
PARAGIOS, N. Single View Reconstruction Using Shape Grammars
for Urban Environments. ICCV (2009).

[25] KRESS-GAZIT, H., FAINEKOS, G., AND PAPPAS, G.
Temporal-Logic-Based Reactive Mission and Motion Planning. IEEE
transactions on robotics 25, 6 (2009), 1370–1381.

[26] LITTMAN, M. Algorithms for sequential decision making. PhD
thesis, Brown University, 1996.

[27] MANIKONDA, V., KRISHNAPRASAD, P., AND HENDLER, J.
Languages, Behaviors, Hybrid Architectures and Motion Control.
Mathematical Control Theory (1998), 199–226.

[28] PACK, R. IMA: The Intelligent Machine Architecture. PhD thesis,
Vanderbilt University, 2003.

[29] RAMADGE, P. J., AND WONHAM, W. M. Supervisory control of a
class of discrete event processes. Analysis and Optimization of
Systems 25, 1 (January 1987), 206–230.

[30] RUSSELL, S., AND NORVIG, P. Artificial intelligence: a modern
approach, 2nd ed. Prentice Hall, 2002.

[31] SLOTINE, J., LI, W., ET AL. Applied nonlinear control. Prentice
Hall Englewood Cliffs, NJ, 1991.

[32] STILMAN, B. Linguistic geometry: from search to construction.
Kluwer Academic Publishers, 2000.

[33] TOSHEV, A., MORDOHAI, P., AND TASKAR, B. Detecting and
Parsing Architecture at City Scale from Range Data. International
Conference on Computer Vision and Pattern Recognition (2010).

[34] YE, H., MICHEL, A., AND HOU, L. Stability theory for hybrid
dynamical systems. Automatic Control, IEEE Transactions on 43, 4
(2002), 461–474.

