
American Control Conference, June 2012

The Motion Grammar Calculus for Context-Free Hybrid Systems

Neil Dantam Mike Stilman

Abstract— This paper provides a method for deriving prov-
ably correct controllers for Hybrid Dynamical Systems with
Context-Free discrete dynamics, nonlinear continuous dynam-
ics, and nonlinear state partitioning. The proposed method
models the system using a Context-Free Motion Grammar
and specifies correct performance using a Regular language
representation such as Linear Temporal Logic. The initial
model is progressively rewritten via a calculus of symbolic
transformation rules until it satisfies the desired specification.

I. INTRODUCTION

Computer-controlled mechanisms such as robotic systems
are being applied to increasingly complicated and critical
tasks such as bomb-disposal, search-and-rescue, and medical
assistance. To make these systems safe and reliable, we need
models to describe the full and often complex requirements
and then verify correct operation. Existing Hybrid Dynamical
System models provide many capabilities to derive and verify
these systems; however, models limited to Regular discrete
dynamics or affine continuous dynamics struggle to handle
complicated tasks such as robot manipulation and human-
robot interaction. For systems requiring more complex be-
havior, the Motion Grammar [1, 2] provides the ability to
represent, derive, and verify correct hybrid controllers.

This paper presents a method to derive correct controllers
for complex hybrid dynamical systems such as robot manip-
ulators. By modeling the hybrid system using our Motion
Grammar [2], we can describe a broader class of systems
than related approaches [3–5] at the cost, presently, of a
less automated derivation procedure. Compared to other
approaches, the use of a Context-Free language for discrete
dynamics is a unique feature of the Motion Grammar in
hybrid-systems models and provides the critical ability to use
memory during the online operation of the system. This is
strictly more powerful than the common Regular language
class. A preliminary report on this derivation method was
presented in [6]. We have extended this work by proving
the validity of the derivation procedure, considering safe
operating regions, and relating to existing techniques.

This paper is organized as follows: Sect. II considers
related work. Sect. III provides background on our model for
hybrid systems, the Motion Grammar. Sect. IV explains the
challenge of how to partition the state space and describes
a simple reachability test. Next, we introduce the primary
goal of the paper, to transform a grammar that describes
the system into one that correctly controls the system. Sect.
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V defines correctness for hybrid systems and introduces a
lemma for proving allowable derivations. Sect. VI uses that
lemma to produce and prove a set the symbolic transfor-
mations that can be applied to Motion Grammars. Sect. VII
discusses safe and unsafe operating regions. Sect. VIII gives
a sample derivation. Sect. IX concludes with future work.

II. RELATED WORK

Hybrid Control is a quickly advancing research area describ-
ing systems with both discrete, event-driven, dynamics and
continuous, time-driven, dynamics. Language and Automata
Theory [7] was first applied to Discrete Event Systems (DES)
by [8]. Hybrid Automata combine a Finite State Machine
(FSM) with differential equations for each FSM state. This
is a widely studied and utilized model [9–13]. The Motion
Description Language is another approach that describes a
hybrid system switching though a sequence of continuously-
valued input functions [14, 15]. In this paper, we model
hybrid systems using the Motion Grammar which represents
continuous dynamics with differential equations and discrete
dynamics using a Context-Free Grammar (CFG) [1]. This
provides a few key advantages. A CFG is a more powerful
language model than an FSM, so we can represent a broader
class of discrete dynamics [7] while still allowing offline
verification and efficient online control [2]. Additionally,
while grammars have equivalent counterparts as push-down
automata, we find the notation of a grammar more convenient
as it simplifies both hierarchical decomposition and the
symbolic transformations described in this paper. Thus we
provide a hybrid systems model which builds on existing
approaches in useful ways.

Model Checking is a technique for verifying discrete and
hybrid systems by systematically testing whether the model
satisfies a specified property [16, 17]. In the area of Hybrid
Control, it is common to specify the desired properties
using Linear Temporal Logic (LTL) and there are several
approaches for automatically generating hybrid controllers
from these specifications [3–5]. These approaches make
assumptions about the language class, continuous dynamics,
and discrete state. Namely, the language class is Regular,
the continuous dynamics are affine, and the discrete state
is a polytopic partitioning of the continuous state space. In
this paper, we relax these assumptions. Our language class is
Context-Free rather than Regular, our continuous dynamics
may be arbitrary smooth functions, and we partition the
continuous state space with nonlinear analytic surfaces. Ad-
ditionally, our transformations permit the introduction of new
regions or switching surfaces into the system language which
is not considered in these previous methods. In this paper we
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provide tools to derive controllers for a more general class
of hybrid systems.

To model-check a hybrid system, we must know the fea-
sibility of discrete transitions resulting from the continuous
dynamics. In other words, it is important to know whether
or not discrete transitions from continuous region A to B
are possible. This is particularly important in the case where
region B is a system failure state that should be avoided. The
general answer to this question can be determined by solving
the Hamilton-Jacobi-Isaacs partial differential equation (HJI
PDE) to compute the backwards reachable set from the
region of the transition [18, 19]. However, solving these
HJI PDEs can be very difficult. The method of Barrier
Certificates is a simpler approach that verifies avoidance of
unsafe regions using a local test for uncrossable boundaries
[20]. We apply this method in our approach for deriving safe
system paths.

Model checkers also use the simulation and bisimulation
relations between two systems, which show that one system
may match the stepwise behavior of the other [16]. These
relations are useful because they allow properties proven
for one system to transfer to the other. Bisimulation for
continuous and hybrid systems is studied in [21]. We use
a simplified simulation relation in Sect. V to determine
allowable steps in the stepwise derivation of a correct system.

III. HYBRID SYSTEMS AND THE MOTION GRAMMAR

Hybrid Dynamical Systems combine discrete and continuous
dynamics; this is a useful model for digitally controlled
mechanisms such as robots. The discrete dynamics of a
hybrid system evolve as discrete state changes in response to
events. The continuous dynamics evolve as continuous state
varies over time. We define a hybrid system as,

Definition 1: A hybrid system is a tuple
F = (X ,Z,U ,Q ,Z , δ, ρ) where,
X ⊆ <m is the continuous state
Z ⊆ <n is the continuous observation
U ⊆ <p is the continuous input
Q is the set of discrete state
Z is the set of discrete events
δ : Q ×X × U 7→ X is the continuous dynamics
ρ : Q × Z 7→ Q is the discrete dynamics
Note that in this definition, there are two different notions

of a path for the system. First, there are paths as trajectories
through the continuous state space X . Second, there are
paths as sequences of discrete events in Z. From this second
case, the set of all paths as sequences of discrete events is
the language of the system. We define a language using a
grammar [7].

Definition 2: The language of system F , LF , is the set of
all sequences of discrete events z ∈ Z that F may encounter.
LF ⊆ Z∗.

To analyze hybrid systems, we adopt an explicit rep-
resentation for the combined dynamics called the Motion
Grammar. The Motion Grammar combines Formal Language
Theory and Modern Control Theory to represent hybrid
systems using a Context-Free Grammar (CFG) and State-
Space differential equations. A CFG represents the discrete

�
�

�
�

〈task〉 → 〈load〉〈task〉〈unload〉 (1)
| [all] (2)

〈load〉 → {ẋ = f1(x)} [loaded] (3)
〈unload〉 → {ẋ = f2(x)} [unloaded] (4)

Fig. 1. Example of a Motion Grammar

dynamics using a set of production rules. Its representative
power is equivalent to a Finite State Machine augmented with
a pushdown stack which allows the controller to keep mem-
ory and select production expansions according to events that
have long passed. The differential equations represent the
continuous dynamics. We define the Motion Grammar as:

Definition 3: The Motion Grammar is a tuple
GM = (Z, V, P, S,X ,Z,U , η,K) where,
Z is the set of events, or tokens
V is the set of nonterminals
P ⊂ V × (Z ∪ V )∗ is the set of productions
S ∈ V is the starting nonterminal
X ⊆ <m is the continuous state space
Z ⊆ <n is the continuous observation space
U ⊆ <p is the continuous input space
η : Z 7→ Z is the tokenizing function
K ⊂ X 7→ X × U is the set of semantic rules

We illustrate the notation for the Motion Grammar through
the example in Fig. 1. Using the standard Backus-Naur Form
for CFGs [7], we write nonterminals v ∈ V between angle
brackets 〈〉, tokens z ∈ Z between square brackets [], and
semantic rules k ∈ K between curly braces {}. Each line
of Fig. 1 is a production p ∈ P . This grammar describes a
loading and unloading task. The starting nonterminal 〈task〉
expands either to 〈load〉〈task〉〈unload〉, (1), or to the token
[all], (2). From this expansion, we see the system will repeat-
edly perform 〈load〉 operations until receiving an [all] token.
Then the system will perform 〈unload〉 operations of the
same number as the prior 〈load〉 operations. This simple use
of memory is possible with Context-Free systems. Regular
systems are not powerful enough. The other two productions,
(3) and (4), show the continuous dynamics and terminating
condition for the 〈load〉 and 〈unload〉 operations. This exam-
ple demonstrates the continuous dynamics and the Context-
Free discrete dynamics of the Motion Grammar.

There are a few important advantages to the model used
in the Motion Grammar. CFGs represent a balance be-
tween computational efficiency, representative power, and
provable response. The fast algorithms for Context-Free
parsing enable the robot to quickly react online without
lengthy deliberative planning. CFGs are more powerful
than Regular language representations while still permitting
model-checking against a Regular language specification [7],
allowing the system designer to tackle a broader class of
problems and still prove desired response. Most robot tasks
can be recursively divided into a number of simpler subtasks.
The hierarchical nature of grammatical productions and the
corresponding parse trees are well suited to representing this
hierarchical task decomposition [2]. To our knowledge, this
combination of hierarchical decomposability, Context-Free
power, and formal verifiability are not found together in any
prior methods for robot control.



IV. TOKENIZATION AND REACHABILITY

Tokens are instantaneous events which drive the discrete
system dynamics. In this work, we focus on a particular
type of event: entry into some region of interest within the
continuous state space X . Thus, the string of tokens in Z
represents an abstracted path of the system through X , which
we will use in Sect. V to prove correctness. Additionally, we
will assume a fully observable system such that x(t) ∈ X is
known for all t.

There are different types of regions in X that may be
relevant. In [22], position and velocity regions are used to
produce robot trajectories. Here, we consider the general case
of any region of interest in state space. The region for an
event may be an area where the underlying dynamics of the
system change, such as at a contact or impact. Regions may
also be areas where we want our input to the system to
abruptly change, such as a mobile robot reaching a way-
point and switching to a new trajectory. A new token or
event is generated when the system enters into the region.

Definition 4: The token set Z is a set of regions rep-
resenting a complete partition of the state space X . For
[x ∈ Ri] ∈ Z ,
• Ri ∩Rj = ∅, i 6= j, regions are nonoverlapping.
•
⋃|Z |
i=1Ri = X , regions cover the entire state space.

Note that it is trivial to relax this condition by splitting
overlapping regions. We use the non-overlapping formulation
to simplify our analysis.

A. Tokenization
Tokenization is the process of breaking up the unstructured
observation into a stream of tokens or events. This is the
first step our controller must take to parse the observation.
Because tokenization is implemented via digital logic or
software, we use a discrete-time formulation. Based on Def.
4, we define tokenization as follows,

Definition 5: A new token is generated when the system
crosses the boundary between two regions. In discrete time,
when xk−1 ∈ Ri ∧ xk ∈ Rj ∧ i 6= j, token [x ∈ Rj] is
appended to the input tape.

At each time step tk, a discrete-time controller must
compute which region it is in. If the region has changed
since the previous step tk−1, then the controller parses the
token associated with the new region. One way to perform
this tokenization is to express a region as bounded by
codimension-1 manifolds M given as the level-set for some
scalar function,

M = {x : s(x) = 0} (5)

Since the manifold is composed of all points where scalar
s(x) = 0, the sign (s(x)) indicates the side of the manifold,
and consequently the region, of any system state.

B. Conservative Reachability with Barrier Certificates
By defining tokens as regions, we can use the continuous
dynamics to predict the discrete dynamics. This will be used
in Sect. VI, to transform the grammar. Observe that since
tokens are regions, the set of discrete tokens which may be
generated is equivalent to the set of reachable regions of

continuous state. This problem has previously been addressed
by others such [18] using Hamilton-Jacobi-Isaacs Partial
Differential Equations (HJI PDE) to compute the backwards
reachable set, and this method is indeed directly applicable
to the Motion Grammar. However, it can often be very
difficult to solve these HJI PDEs. If there are no known
analytic solutions for the particular PDE of interest, it is often
necessary to resort to numerical methods. The method of
barrier certificates [20] instead considers behavior only along
a specific boundary within the state space. This approach
should be easier to evaluate and is directly applicable to our
chosen method of tokenizing the state space.

We apply barrier certificates to the Motion Grammar
using the Lie derivative along region boundaries. Consider
the autonomous system dynamics given by smooth function
ẋ = f(x). Let the boundary between Ri and Rj be given
by the codimension-1 manifold M, c = s(x). The normal
vector toM at point x is ∇s(x). To determine if the system
will cross M at point x, we relate the direction of ∇s(x)
and f(x) using the sign of the Lie derivative, Lfs,

Theorem 1: Let M = {x : s(x) = 0}. If Lfs(x) <
0 ∀x ∈ M, the system will never cross M. If ∃x ∈
M, Lfs(x) > 0, the system may cross M.

Proof: Consider some p ∈M. Then Lfs(p) = ∇s(p)·
f(p) = ‖∇s(p)‖ ‖f(p)‖ cos θ, where θ is the angle between
∇s(p) and f(p). When cos θ > 0, the system moves off
M in the direction of increasing s(x). When cos θ < 0, the
system moves off M in the direction of decreasing s(x).
Since sign (cos θ) = sign (Lfs) we can use sign (Lfs) to
test which side of M the system will move to from p. If
there is no p for which Lfs > 0, then the system cannot
move off the manifold to cross it. If there is any p for which
Lfs > 0, then from that p, the system will move off the
manifold and thus cross it.

Thm. 1 thus shows whether one region is directly reach-
able from another based on system dynamics ẋ = f(x).
It is conservative because it only says whether a boundary
crossing occurs based on the local condition. The crossing
occurs when both Lfs > 0, and the global dynamics brings
x to the local neighborhood of the boundary.

We can express Lfs only alongM by parameterizingM
by some v ∈ <n−1, where X ∈ <n.

M = {x : x = φ(v)} (6)

For example, if M is a hyperplane, then φ(v) = Mv,
where M is a n × (n − 1) matrix. If M is a hypersphere,
the φ can be defined to transform spherical coordinate
vector v to Cartesian coordinates x. Then, we consider
sign (Lfs [φ (v)]) to determine if the boundary may ever be
crossed.

C. Reachability Example
Consider a region bounded by an ellipse centered on the
origin as shown in Fig. 2.

M ≡ c = x1
2

a12
+
x2

2

a22
(7)

∇s(x) =
[ x1

a12
x2

a22

]
(8)
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Lfs(x) < 0

Fig. 2. A region given by 1 = x2
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y02 = 2x0
22
x + 2y0y. The system evolves by ẋ = −x, indicating that it

stays within R1 at the boundary.

1) System 1: Consider time-driven dynamics ẋ = −x.
This gives us Lfs = −x1

2

a12 − x2
2

a22 . Since this is always
negative, the system will not cross the boundary.

2) System 2: Consider time-driven dynamics ẋ =[
y − x −x− y

]T
. This gives us Lfs = x1x2

a12 − x1x2

a22 −
x1

2

a12 − x2
2

a22 . We can use a parameterization of the manifold
by v, x =

[
a1 cos v a2 sin v

]
to rewrite Lfs = a2

a1
cvsv −

a1
a2
cvsv − 1. From this, we see that if a1

a2
> 1 +

√
2 or

a2
a1

> 1 +
√
2, the Lie derivative will be positive for some

values of v meaning that the system will cross the boundary
from some, but not all v.

D. Additional Event Types
In addition to the region-based events of Def. 4-5 which
result from the controllable continuous dynamics, we can
model events resulting from uncontrollable continuous dy-
namics or purely-discrete dynamics as well. Such events
may include faults, limit conditions, and even human actions
or spoken words. All can be included as tokens in the
grammar. In this paper however, we focus on the controllable
region-entry events because it is by appropriately controlling
these events that we can transform the grammar to achieve
correctness.

V. PROCESS TO DERIVE CORRECT GRAMMARS

To transform a grammar which describes the system into
a grammar that correctly controls the system, we must
consider which transformations are possible. Only certain
transformations of the grammar are valid. We are particularly
concerned with ensuring that our transformations maintain
the property that the derived grammar GM ′ is complete –
that GM ′ describes all paths that were possible in the original
grammar GM , because GM is an accurate representation of
the hybrid system by definition. In this section we first define
and explain the correctness property we wish to achieve.
Second, we show examples of transformations that lead to
complete and incomplete GM ′. Third, we define complete-
ness and present a method for determining whether a class of
transformations results in complete derived grammars, GM ′.
Finally, in Sect. VI, we use this method to prove that certain
transformations are valid for all Motion Grammars, forming
a calculus that can be used to transform a Motion Grammar
to a correct Motion Grammar.

A. Correctness
To guarantee that our system is safe, we must prove that it
satisfies some property describing correct operation. Using

the Motion Grammar as the model for our system, we have
a natural way of expressing correctness. Observe from Def.
5, that the language LGM of Motion Grammar GM represents
the set of all possible paths that the system may take. For
GM to be correct, LGM must be within some set of allowable
paths. This set of allowable paths is in fact another language
Ls which we may specify using Regular-equivalent models
such as Finite State Machines or Linear Temporal Logic [2].

Definition 6: Given model GM and a language of correct
operation Ls, the language defined by the GM is LGM and
correct {GM ,Ls} ⇐⇒ LGM ⊆ Ls
If our system is not correct, we must modify it to be correct.
We propose an iterative derivation process to transform some
initial grammar GM where ¬correct {GM ,Ls} into some
derived grammar GM ∗ such that correct {GM ∗,Ls}. At each
step of this derivation process, we must ensure that any
transformation GM  GM ′ preserves both accuracy of the
model and our ability to guarantee correctness. To determine
which are allowable derivation steps, we use a simulation
relation, GM � GM ′, meaning our derived grammar GM ′ is
able to simulate the operation of the original grammar GM .

B. Example of Complete and Incomplete Derivations
To illustrate the types of transformations which are and are
not possible, consider the trivial system in Fig. 3(a). Here,
a ball is dropped from height x0 = 1. Its collision with the
ground is perfectly inelastic, so it will stop as soon as it
reaches x = 0. An initial grammar describing this system
is shown in Fig. 3(b). From inspection, we can remove the
expansion for 〈H〉 and still have the valid grammar G′a in
Fig. 3(c). This is because the initial region for 〈H〉, x ≥ 2,
is unreachable from the production for 〈S〉. However, if we
remove the production for 〈G〉 as well, Fig. 3(d), then we no
longer have a valid grammar. This is because G and G′b are
describing different sets of paths. Namely, G′b takes a single
path – tunneling to the center of the Earth – while G stops
at x = 0. Thus, we see that there must be a specific relation
between initial and derived grammars in order to maintain
a faithful representation of the system. This specific relation
is the simulation, G � G′.
C. Completeness and a Simulation Lemma
A complete derived system model G′ represents everything
the initial system G could do. Slightly more formally, G′

x̂g

x = 1

x = 0

(a) System

�
�

�
�

〈S〉 → [x = 1] {ẋ = −mg} 〈A〉
〈A〉 → 〈G〉|〈H〉
〈G〉 → [x = 0] {ẋ = 0}
〈H〉 → [x ≥ 2] {ẋ = −mg}

(b) Initial Grammar, G�



�
	〈S〉 → [x = 1] {ẋ = −mg} 〈G〉

〈G〉 → [x = 0] {ẋ = 0}
(c) Simulating Grammar, G′a�� ��〈S〉 → [x = 1] {ẋ = −mg}

(d) Non-Simulating Grammar, G′b

Fig. 3. A dropped ball with a perfectly-inelastic collision. Examples of
simulating and nonsimulating grammars. G � G′a, G 6� G′b



describes the set of all paths that the initial system G could
take. This property is given as the simulation G � G′.
The reverse may not hold. That is, G′ may be able to
take paths which G cannot. The concrete definition of a
path depends on type of system we are dealing with. For
discrete Transition Systems, a path is the sequence states
and transitions the system takes. For continuous systems, a
path is a trajectory though its state space. Simulation paths
for a variety of systems are detailed in [21]. For our goal
of deriving correct grammars, we will define paths and the
simulation GM �c GM ′ as follows,

Definition 7: Given models GM and GM ′ with
x, x′, u, u′ ∈ X ,X ′,U ,U ′, then GM �c GM ′ ⇐⇒
(x0 = x0

′ ∧ u(t) = u′(t) =⇒ x(t) = x′(t)).
This relation shows that GM and GM ′ follow the same path
provided that GM is given the same initial conditions and
inputs as GM ′. The initial conditions are the first token of
the starting nonterminal. For example, if 〈A〉 begins with
token [x ∈ R], the initial condition of 〈A〉 is R. It is critical
that GM and GM ′ are given the same input. The input u the
our only way to influence the path of the system to make
it correct. To shorten the notation, let GM |u′,x′0 be Motion
Grammar GM subject to initial condition x′0 and input u′, and
likewise for the language LGM |u′,x′0 . We merge the simulation
and correctness definitions as follows.

Lemma 1: GM �c GM ′ ∧ u(t) = u′(t) ∧ x0 = x′0 ∧
correct

{
GM ′,L′s

}
=⇒ correct

{
GM |x′0,u′ ,L

′
s

}
, where

L′s,L′GM ,L
′
GM |u′,x′0

⊆ Z ′
∗.

Proof: From Def. 7, GM �c GM ′∧u(t) = u′(t)∧x0 =
x′0 =⇒ x(t) = x′(t). From Def. 5, x(t) = x′(t) =⇒
L′GM = L′GM |u′,x′0 . From Def. 6 and Def. 7, L′GM =

L′GM |u′,x′0 ∧ correct {GM ,L′s} =⇒ correct
{
GM |x′0,u′ ,L

′
s

}
From this, we can determine allowable derivations based
on simulation �c, initial state x0, and input u. Note that
since derivations need not preserve the discrete token set Z ,
we must specify the correctness language L′s over token set
Z ′. With Lem. 1, we can now identify a set of symbolic
transformations to apply to any Motion Grammar.

VI. THE MOTION GRAMMAR CALCULUS

To derive grammars for safe, Context-Free systems, we
introduce a calculus of symbolic transformation rules for
constructing a correct hybrid controller. This process begins
with some initial model the hybrid system. The rules then
rewrite the model step-by-step, always adhering to the sim-
ulation relation and Lem. 1 so that the correctness of the
derived model implies correctness for our system. Thus we
effectively change the system language until it satisfies our
specification. Through this derivation process, we modify the
behavior of the system to make it correct.

In each rule, we start with some grammar GM and derive a
grammar GM ′. A rule is valid only if correct

{
GM ′,L′s

}
=⇒

correct
{
GM |x′0,u′ ,L

′
s

}
, which we will prove using Lem. 1. In

the notation for these rules, we specify some precondition on
the structure of elements of the production set P , and then
specify the resulting token set Z ′, nonterminal set V ′ and
production set P ′.

A. Transforms

Input First, consider the very simple transformation of
specifying an input u to illustrate this process. When the
continuous dynamics are in the form ẋ = f0(x, u), we can
always specify an input u.

Transform 1: Given p = A→ αf0(x, u)β, define f(x) =
f0(x, g(x)). Then the new production set is P ′ = P − p ∪
{A→ αf(x)β}.

Proof: For this transform to be allowable, it must
satisfy the preconditions of Lem. 1. Namely we must have
GM �c GM ′ ∧ u(t) = u′(t) ∧ x0 = x′0. Using GM ′
to control the system means our input is given by u′(t).
Since we do not change the start symbol S, the initial
condition x0 = x′0. Finally, in the modified production p,
ẋ′ = f(x) = f0(x, g(x)) = f0(x, u

′(t)), so ẋ′ = ẋ|u′ . Thus,
x0 = x′0 ∧ ẋ′ = ẋ|u′ =⇒ x(t) = x′(t) =⇒ GM �c GM ′.
Thus, we satisfy the preconditions of Lem. 1 and can use
correct

{
GM ′,L′s

}
to decide correct {GM ,L′s}.

Token Splitting A region represented by a token can be split
into two regions, creating two new tokens. We then create
new productions for these new regions.

Transform 2: Given some ζ0 = [x ∈ R0] ∈ Z, cre-
ate tokens ζ1 = [x ∈ R1] and ζ2 = [x ∈ R2] such
that R1 ∪ R2 = R0 ∧ R1 ∩ R2 = ∅ and update
token set Z ′ = Z − ζ0 ∪ {ζ1, ζ2}. The new nonter-
minal set is V ′ = V ∪ {A0, A1, A2, A3, A4}. The new
production set is P ′ = P − {(A→ α1ζ0κα2) ∈ P} ∪
{(A→ α1A0) , (A0 → A1|A2) : (A→ α1ζ0κα2) ∈ P} ∪
{(A1 → ζ1κA3) , (A2 → ζ2κA4) : (A→ α1ζ0κα2) ∈ P}∪
{(A3 → A2|α2) , (A4 → A1|α2) : (A→ α1ζ0κα2) ∈ P}.

Proof: Following the form of the proof for Transform
1, we need to show that x(t) = x′(t). Since we have not
modified the continuous dynamics, we need only show that
the discrete dynamics of GM ′ permit the same paths as in
GM . In GM , for some production A→ α1ζ0κα2, the system
may pass from the region of α1 into R0 and then on to
the region of α2. When we split R0, there are six cases to
consider: Rα1

→ R1, Rα1
→ R2, R1 → Rα2

, R2 → Rα2
,

R1 → R2, R2 → R1. These cases are handled respectively
by the added productions A0 → A1, A0 → A2, A3 → α2,
A4 → α2, A3 → A2, and A4 → A1. Thus all paths from
GM and matched by GM ′, so GM �c GM ′.

Adjacency Pruning If two regions in state space are not
adjacent, then the system may not pass directly between
them. Thus we can eliminate productions which allow this
to happen.

Transform 3: For p1 = A→ rAκAB, B → β1| . . . |βn, if
rA is not adjacent to R0(βn) WLOG, then P ′ = P − p1 ∪
{A→ rAκAB

′} ∪ {B′ → β1| . . . |βn−1}
Proof: To show x(t) = x′(t), we prove by contradic-

tion. We can say that x(t) = x′(t) if and only if the removed
production is unreachable, that is, the system GM will never
pass from rA to R0(βn). Now, assume x(t) 6= x′(t). Then
GM must pass from rA to R0(βn). Since these two regions
are not adjacent, this is a contradiction. Thus, we must have
x(t) = x′(t), so GM �c GM ′.



Barrier Pruning The continuous dynamics f provide infor-
mation that may be used to remove grammar productions.
Using Thm. 1, we can show whether the system following
ẋ = f(x) may cross into any of the regions specified in the
grammar.

Transform 4: For p1 = A→ rAκAB, B → β1| . . . |βn, if
WLOG Lfs(p) < 0 for all p along the level set s(x) = 0
which borders regions rA and R0(βn), then P ′ = P − p2.

Proof: To show x(t) = x′(t), we prove by contradic-
tion. We can say that x(t) = x′(t) if and only if the removed
production is unreachable, that is, the system GM will never
pass from rA to R0(βn). Now, assume x(t) 6= x′(t). Then
GM may pass from rA to R0(βn). By Thm. 1 and Lfs(p) <
0 ∀p ∈ {x : s(x) = 0}, this is a contradiction. Thus, we must
have x(t) = x′(t), so GM �c GM ′.

Bounce Pruning If the system in moving from region r1 to
region r2 will immediately reenter r1, then we can eliminate
productions showing that the system will pass through r2
into some third region.

Transform 5: Given productions p1 = A → r1κAB,
p2 = B → r2κBC, and p3 = C → r1κBα, if LκB

s21(x) >
0 ∀x ∈ {x : s21(x) = 0}, then P ′ = P − p1 − p2 ∪
{(A→ r1κAB

′) , (B′ → r2κBr1κBα)}
Proof: To show x(t) = x′(t), we must account for the

removed productions by proving the system will not pass
from r1 to r2 to some other region in R0(C)− r1. Instead,
the system must immediately return to r1 from r2. This is
given directly by Thm. 1 and the Lie derivative LκB

s21(x) >
0 ∀x ∈ {x : s21(x) = 0}, indicating that under mode κB
this system will move off s12(x) = −s21(x) = 0 in
the direction of r1. Thus, p2 will expand nonterminal C
with p3, according to the sequence given by the additional
productions in P ′.

B. Using the Calculus to Enforce Correctness
These rules provide important capabilities to work with
hybrid models. Transform 1 allows us to specify the input to
the robot to drive toward desired tokens. Transform 2 allows
us to introduce new surfaces where we can discretely switch
control inputs. Transform 3, Transform 4, and Transform 5
allow us to remove productions from the grammar. We can
use this to satisfy a correctness constraint by eliminating
certain bad productions causing the constraint violation.
Thus, we can systematically produce a grammatical model
implementing correct operation.

VII. SAFE REGIONS AND NEW SWITCHING SURFACES

Using our conservative reachability test from Thm. 1 and
the rewrite rules of Sect. VI, we can identify safe operating
regions and consequently switching surfaces to maintain safe
operation. Consider the example in Fig. 4 where there is
some region with good and bad exit boundaries. Here, we
wish to ensure that the system will cross the good manifold
bounding R0, M1, and that it will not cross the other bad
other manifoldM2. Assume the continuous dynamics in R0

are ẋ = f0(x, u) and we have some controller u = g(x), so
that we can write the resulting system as the smooth function
ẋ = f0(x, g(x)) = f(x). Then we can consider the Lie

M1M′

M2

Fig. 4. Splitting the region based on ẋ = f(x) at each boundary.

derivatives along each manifold M1 and M2, Lfs1 and
Lfs2 respectively. If both Lfs1 and Lfs2 are positive, then
for x close to M1 and M2, the system will cross both the
safe and the unsafe boundaries. To indicate the safe subregion
of R0, we introduce a new boundary M′ separating M1

and M2. M′ bounds the region of inevitable collision. By
always staying to one side of M′, we can be assured that
by applying input function u = g(x), we will not cross the
unsafe boundary.

For this boundary notion to be useful during the online
control of the system, we must be able to quickly test
during each control cycle on which side of the boundary
the system currently resides. If we express the manifold as
M′ = {x : s(x) = 0}, then the sign of s(x) will give
the current side of the manifold. Thus, we must find some
representation for s(x) to evaluate in our control program.

We can describe the boundary between safe and unsafe
regions based on the idea that boundary M′ is composed
of the family of integral curves leading to the intersection
of the safe and unsafe exit surfaces. That is, for every point
along M′, the system dynamics ẋ = f(x) will drive x to
the intersection of the two exit surfaces M1 and M2. This
description leads to the following two geometric properties
of M′ = {x : s(x) = 0}. First, the gradient of s(x) is
orthogonal to the system vector field f(x). Second, the
gradient of s(x) is orthogonal to the intersection MC of
our two exit surfaces M1 and M2.

Theorem 2: ∇s(x)⊥f(x)
Proof: Consider some point p on M′, s(p) = 0. Point

p moves according to ṗ = f(p), and d
dts(p) = 0. d

dts(p) =
∂s
∂p

T dp
dt = (∇s) (f) = 0. Since the inner product of ∇s(x)

and f(x) is always zero, they must be orthogonal.
Theorem 3: Let Mc =

{
x : x = p(v), v ∈ <n−2

}
, then

∇s(x)⊥ ∂p
∂vi

.
Proof: SinceMc ⊂M′, ∂s(p(v))∂vi

= 0. Then ∂s(p(v))
∂vi

=
∂s
∂p

T ∂p
∂vi

= (∇s)
(
∂p
∂v

)
.

From Thm. 2 and 3, we can derive ∇s by finding the vector
that satisfies the two orthogonal relations. For any vector ξ,
we can find a vector ξ′ orthogonal to ψ = f(x) or ψ = ∂p

∂v
using a projection.

ξ′ = ξ − projψξ = ξ − 〈ξ, ψ〉
‖ψ‖2

ψ (9)

Thus, we form ∇s by symbolically applying the Gram-
Schmidt procedure.

∇s = `− projf(x)`− proj ∂p
∂v1

`− . . .− proj ∂p
∂vn−2

` (10)

Equation (10) is useful when we can express ∇p in a form
that does not include any v. For example, whenMc is linear,
p(v) = Mv and ∇p = M . Then, with ∇s known, we can
solve the following initial value problem to find s(x),
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〈S〉 → [s]
{
ẋ = [u ks]

T
}
〈M〉 (11)

〈M〉 → [m]
{
ẋ = [u −|u|]T

}
〈N〉 (12)

〈N〉 → 〈S〉 | 〈D〉 (13)
〈D〉 → [d] {ẋ = 0} (14)

(c) Initial Grammar

Fig. 5. Initial grammar for 1-dimensional battery robot.

s0 = g(0)
∂s

∂xi
= (∇s)i

While (10) provides an analytic form for the gradient, solving
(11) is nontrivial. Approximations such as a Taylor series or
Padé approximant can be directly computed from (10).

VIII. EXAMPLE DERIVATION

We now demonstrate this derivation approach with a simple
example. Consider a mobile robot moving in one dimension,
x1, with a battery, x2, that discharges as it moves. There is a
recharging station at the zero position. When the battery level
falls to zero, the robot can no longer operate. The continuous
state space and initial grammar are shown in Fig. 5(a). The
initial grammar for this system is given in Fig. 5(c).

Because we want the robot to keep operating, its battery
should never run down. This constraint is expressed in LTL:

Gs = � (¬ [d]) (15)

The initial grammar does not satisfy (15). For example, the
grammar generates the string [s] [m] [d], which violates the
constraint. Thus, we must apply our transformations to the
grammar in order to make it correct.

There are two main ideas to satisfying (15). First, the robot
must not go far too from the charger, ensuring that it has
enough charge to return. Second, the robot must wait in the
charger to recharge. We apply these ideas in the derivation:

1) In (12), apply Transform 2 to split [m]. See new regions in Fig. 5(b).

〈M〉 →
((((

(((
(((

[m]
{
ẋ = [u −|u|]T

}
〈N〉 (16)

| 〈M1〉|〈M2〉 (17)

〈M1〉 → [m+]
{
ẋ = [u −|u|]T

}
〈M3〉 (18)

〈M2〉 → [m−]
{
ẋ = [u −|u|]T

}
〈M4〉 (19)

〈M3〉 → 〈M2〉|〈N〉 (20)
〈M4〉 → 〈M1〉|〈N〉 (21)

2) Duplicate (18) and replace in (21).

〈M〉 → 〈M1〉|〈M2〉 (22)

〈M1〉 → [m+]
{
ẋ = [u −|u|]T

}
〈M3〉 (23)

〈M2〉 → [m−]
{
ẋ = [u −|u|]T

}
〈M4〉 (24)

〈M3〉 → 〈M2〉|〈N〉 (25)

〈M′1〉 → [m+]
{
ẋ = [u −|u|]T

}
〈M3〉 (26)

〈M4〉 → ��
�〈M1〉〈M′1〉|〈N〉 (27)

3) In (24) and (26), apply Transform 1 to specify input u = −x.
. . .

〈M2〉 → [m−]
{
ẋ = [−x −|x|]T

}
〈M4〉 (28)

〈M′1〉 → [m+]
{
ẋ = [−x −|x|]T

}
〈M3〉 (29)

. . .
To simplify notation: κ− ≡

{
ẋ = [−x −|x|]T

}
.

4) Consider the Lie derivative between [m+] and [m−] according to
κ−. M: −1.5x1 + x2 = ε, x = [1.5v v + ε]T , v > 0, ∇s =

[−1.5 1]T , Lκ−s|M = 1.52v + v + ε, always positive. In (28),
(27), (29), apply Transform 5,
〈M〉 → 〈M1〉|〈M2〉 (30)

〈M1〉 → [m+]
{
ẋ = [u −|u|]T

}
〈M3〉 (31)

〈M2〉 → [m−]
{
ẋ = [u −|u|]T

}
〈M4〉 (32)

〈M3〉 → ��
�〈M2〉〈M′2〉|〈N〉 (33)

〈M′1〉 → [m+]
{
ẋ = [u −|u|]T

}
〈M3〉 (34)

〈M4〉 → 〈M′1〉|〈N〉 (35)

〈M2〉 → [m−]
{
ẋ = [−x −|x|]T

}
〈M4〉 (36)

〈M′1〉 → [m+]
{
ẋ = [−x −|x|]T

}
〈M3〉 (37)

〈M′2〉 → [m−]κ− [m+]κ−〈M3〉 (38)
Thus, when the system moves from [m+] to [m−], it will switch to
mode κ− to return to the charging station.

5) Apply Transform 3 and Transform 4.
〈M〉 → 〈M1〉|〈M2〉 (39)

〈M1〉 → [m+]
{
ẋ = [u −|u|]T

}
��
�〈M3〉〈M′3〉 (40)

〈M2〉 → [m−]
{
ẋ = [u −|u|]T

}
〈M4〉 (41)

〈M3〉 → 〈M′2〉|〈N〉 (42)
〈M′3〉 → 〈M′2〉|〈S〉 (43)

〈M′1〉 → [m+]
{
ẋ = [u −|u|]T

}
��
�〈M3〉〈M′3〉 (44)

〈M4〉 → 〈M′1〉|〈N〉 (45)

〈M2〉 → [m−]
{
ẋ = [−x −|x|]T

}
〈M4〉 (46)

〈M′1〉 → [m+]
{
ẋ = [−x −|x|]T

}
〈M3〉 (47)

〈M′2〉 → [m−]κ− [m+]κ−��
�〈M3〉〈S〉 (48)

6) Switch now to (11) and split [s].

〈S〉 →
(((

((((
((

[s]
{
ẋ = [u ks]

T
}
〈M〉 (49)

| S〈S1〉|〈S2〉 (50)

〈S1〉 → [s+]
{
ẋ = [u ks]

T
}
〈S3〉 (51)

〈S2〉 → [s−]
{
ẋ = [u ks]

T
}
〈S4〉 (52)

〈S3〉 → 〈S2〉|〈M〉 (53)
〈S4〉 → 〈S1〉|〈M〉 (54)

7) Give input u = −x.
〈S〉 → 〈S1〉|〈S2〉 (55)

〈S1〉 → [s+]
{
ẋ = [u ks]

T
}
〈S3〉 (56)

〈S2〉 → [s−]
{
ẋ = [u ks]

T
}
〈S4〉 (57)

〈S3〉 → 〈S2〉|〈M〉 (58)
〈S4〉 → 〈S1〉|〈M〉 (59)



8) Consider Lie derivative between [s−] and [m] according to{
ẋ = [−x ks]

T
}

:

• M: s(x) = x1 = ±ε, x = [±ε v]T , v > 0

• ∇s = [±1 0]T

• Lκ−s|M = −ε always negative
Consider Lie derivative between [s+] and [s−] according to{
ẋ = [u ks]

T
}

:

• M: s(x) = −x2 = −k, x = [v −k]T , |v| < ε

• ∇s = [±0 −1]T
• Lκ−s|M = −ks always negative

9) Apply Transform 4.
〈S〉 → 〈S1〉|〈S2〉 (60)

〈S1〉 → [s+]
{
ẋ = [u ks]

T
}
��〈S3〉〈M〉 (61)

〈S2〉 → [s−]
{
ẋ = [−x ks]

T
}
��〈S4〉〈S1〉 (62)

10) Combine 〈S〉 and 〈M〉.
〈S〉 → 〈S1〉|〈S2〉 (63)

〈S1〉 → [s+]
{
ẋ = [u ks]

T
}
〈M〉 (64)

〈S2〉 → [s−]
{
ẋ = [−x ks]

T
}
〈S1〉 (65)

〈M〉 → 〈M1〉|M2 (66)

〈M1〉 → [m+]
{
ẋ = [u −|u|]T

}
〈M3〉′ (67)

〈M2〉 → [m−]κ−〈M4〉 . . . (68)
11) Apply Transform 3.

. . . 〈M〉 → 〈M1〉���|〈M2〉 . . . (69)
12) Remove unreferenced and singleton productions.'

&

$

%

〈S〉 → 〈S1〉|〈S2〉

〈S1〉 → [s+]
{
ẋ = [u ks]

T
}
〈M1〉

〈S2〉 → [s−]
{
ẋ = [−x ks]

T
}
〈S1〉

〈M1〉 → [m+]
{
ẋ = [u −|u|]T

}
〈M′3〉

〈M′3〉 → 〈M′2〉|〈S〉
〈M′2〉 → [m−]κ− [m+]κ−〈S〉

We have derived a grammar which guarantees the robot will
never discharge. Note that within the production for 〈M〉, we
have produced a safe operating region as given in Sect. VII.

IX. CONCLUSION

This paper presented a method for analyzing complex hy-
brid systems and deriving controllers with provably correct
performance. Complicated tasks require more powerful dy-
namic models than are possible with Regular Languages,
so we apply a Context-Free Motion Grammar to describe
the system. Safety-critical systems require guarantees on
performance, hence we check our system model against a
specification for correct behavior. To derive the controlled
system which satisfies correctness, we have introduced a
calculus of transformation rules which operate on hybrid
dynamics. By progressively rewriting the grammar, the re-
sulting grammar-based controller satisfies the specification.
This process allows us to correctly control systems with
complex hybrid dynamics.

There are many future possibilities for this work to
automate the development of robust control systems. A
software implementation in the style of Computer Algebra
Systems or automated theorem provers would simplify the
process of deriving the correct grammar used to control

the system. This approach could be integrated with existing
techniques for deriving continuous-domain controllers for
broad classes of physical systems. We will develop tools
based on this framework to facilitate the rapid development
of safe controllers for complex robotic systems.
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