
IEEE International Conference on Robotics and Automation, May 2010

The Motion Grammar for Physical Human-Robot Games

Neil Dantam, Pushkar Kolhe, and Mike Stilman

Abstract— We introduce the Motion Grammar, a powerful
new representation for robot decision making, and validate its
properties through the successful implementation of a physical
human-robot game. The Motion Grammar is a formal tool
for task decomposition and hybrid control in the presence of
significant online uncertainty. In this paper, we describe the
Motion Grammar, introduce some of the formal guarantees it
can provide, and represent the entire game of human-robot
chess through a single formal language. This language includes
game-play, safe handling of human motion, uncertainty in piece
positions, misplaced and collapsed pieces. We demonstrate the
simple and effective language formulation through experiments
on a 14-DOF manipulator interacting with 32 objects (chess
pieces) and an unpredictable human adversary.

Index Terms— Manipulation, Hybrid Control, Formal Meth-
ods, Planning

I. INTRODUCTION

Future robots will be required to respond safely and com-
pletely to physical interaction with humans in complex
environments ranging from hospital assistance to search-and-
rescue operations. Presently, researchers use a number of dis-
tinct methods including collision-free motion planning and
compliant control in order to design strategies for specific
applications. Since it is often infeasible to experimentally
validate a sufficient space of the possible states the robot
may encounter, it is important to prove that the robot follows
a policy that handles all states that may occur. The Motion
Grammar is an efficient representation for complete strate-
gies that combine existing methods, resulting in provably
complete robot manipulation in uncertain environments.

In order to demonstrate the function and effectiveness of
the Motion Grammar, as well as our method of grammar
construction, we apply our representation to the complex
domain of physical human-robot chess. Typically, chess is
thought of as a discrete strategy game. In reality, it is also
a complex continuous manipulation challenge that requires
the robot to handle numerous sources of uncertainty. For
instance, human adversaries may incorrectly displace pieces,
pieces may collapse sideways, and most importantly humans
may endanger themselves by entering the workspace of the
robot. Using the Motion Grammar, it is simple to hierarchi-
cally specify response strategies to each of these potential
threats and achieve a complete global policy.

This paper is organized as follows. Sect. II places the
Motion Grammar in the context of existing work on formal
methods for robot control. Sect. III details the proposed

The authors are with the Center for Robotics and Intelligent Machines
(RIM) at the Georgia Institute of Technology, Atlanta, Georgia, 30332,
USA. Email: ntd@gatech.edu, pushkar@cc.gatech.edu,
mstilman@cc.gatech.edu.

Fig. 1. Our experimental setup for human-robot chess and a partial parse-
tree indicating the robot’s plan to perform a chess move.

representation and describes its key characteristics. Sect.
IV demonstrates its expressive power through the domain
of human-robot chess. We show that the complete system
was able to play chess even with a highly uncooperative
adversary. Sect. V presents the experimental results of our
implementation in a variety of circumstances. Sect. VI sum-
marizes this work and describes future directions of research.

II. RELATED WORK

The Motion Grammar [1] is a linguistic approach to robot
control with significant benefits over existing techniques.
Our method provides immediate response to uncertainty
and efficiency in the context of many degrees of freedom.
Formal guarantees on parsing algorithms enable the robot to
react without lengthy deliberative planning. Furthermore, the
structure imposed by the grammar yields rigorous guarantees
that controllers will respond to all contingencies. The hierar-
chical nature of grammatical productions and corresponding
parse trees allows robot tasks to be recursively divided into a
number of simpler subtasks. To our knowledge, these benefits
are not found together in any prior methods for robot control.

The most prominent efficient control architectures for
robot manipulators are behavior-based methods introduced
by Brooks [2] and Arkin [3]. However, the primary approach
to validation has been experimental due to infeasible com-
putation time requirements of earlier formal methods [4]. In-
stead, [3] formalizes behavior semantics with schema theory,
yet it does not ensure completeness. [5] proposes an Ethical
Architecture to assist with correctness in the military domain.
The Motion Grammar ensures complete operation through a
domain-independent specification of robot response.

1

Common techniques for planning and policy generation
trade efficiency for analytical properties such as complete-
ness. Classical planners guarantee completeness by reducing
planning to theorem proving; however, inference in first order
logic is NP-complete [6]. Furthermore, symbolic methods do
not explicitly address continuous domains. Partially Observ-
able Markov Decision Processes generate solutions for un-
certain environments; however, they also pose NP-complete
problems [7]. The Motion Grammar employs Context-Free
languages, guaranteeing O(n3) runtime [1, 8]. Motion Gram-
mars yield both provable completeness and efficiency.

Alternative formal methods make similar compromises. [9]
describes the Computation and Control Language (CCL), a
Turing-Complete language for robot control; however, Rice’s
Theorem prevents proving nontrivial properties for arbitrary
programs in the CCL [10]. [11] solves graph grammars for
many simple agents. While any application of the Motion
Grammar (Sect. IV) is domain specific, the method (Sect. III)
is domain independent. [12–14] use linear temporal logic to
formally describe uncertain multi-agent robotics by discretiz-
ing the 2D environment. This requires a number of states
that is exponential in the degrees of freedom (DOF). For
our manipulation task with a 14-DOF robot and 32 movable
objects, discretization is not computationally feasible. The
Motion Grammar avoids discretization through continuous
domain semantics and discrete events that represent the task.

The Motion Grammar improves upon the online response
of other hybrid control approaches. Hybrid [15] and Ma-
neuver [16] Automata switch continuous controllers in a
Finite State Machine. In contrast, the Motion Grammar
uses Context-Free Grammars, which allow the controller to
keep a memory of prior actions, build models, and improve
decisions. The Motion Description Language (MDL) [17–
19] describes robot operation with strings of symbols each
representing continuous-valued controllers. These strings are
generated off-line. Instead, the Motion Grammar parses a
string of tokenized sensor readings online. The associated
parse tree evolves to represent the history of system execu-
tion. MDLe [20] also handles reactive planning; however, as
shown in [21], it is not strictly more expressive than Hybrid
Automata. More detail on the expressive power of the Motion
Grammar in relation to other methods is discussed in [1].

In the context of safe human-robot interaction, [22]
demonstrates safe response of a knife-wielding robot based
on collision detection when a human enters the workspace.
Other approaches to safe physical interaction between hu-
mans and robots surveyed by [23] and [24] suggests specific
methods for different types of safety. The Motion Grammar
builds on such methods by providing both task-level guaran-
tees and a common structure for existing techniques.

In general, grammars are a common formal tool in
Linguistics and Computer Science. A number of studies
related to robotics focus on image processing. These include
Fu’s syntactic pattern recognition [25], Han’s attribute graph
grammars for relationships between planes in a scene [26]
and syntactic visual modeling methods by Koutsourakis [27]
and Toshev [28]. B. Stilman’s Linguistic Geometry applies

Motion Parser

ζ0 ζ1 . . . ζk−1︸ ︷︷ ︸
history

ζk ζk+1 . . . ζn︸ ︷︷ ︸
future

tape

Robotic System η(z)

ζ

u

Fig. 2. Operation of the Motion Parser.

grammars to deliberative planning in adversarial games [29].
These works do not address robot control, which is the focus
of our Motion Grammar.

Our experimental domain of robot chess has previous
implementations. [30] describes a specially designed robot
arm and board. [31] developed a robot chess player using a
specialized analytical inverse kinematics. Instead of focusing
on chess play, we use the context of the physical human-
robot game to demonstrate the Motion Grammar. We present
a general solution implemented on a general-purpose robot
arm using general kinematics approaches. Furthermore, we
provide features and safeties beyond game-play and manip-
ulation.

III. THE MOTION GRAMMAR

The Motion Grammar represents the operation of a robotic
system through a Context-Free Grammar. This grammar is
used to generate the Motion Parser which drives the robot.
This method is illustrated in Fig. 2. The output of the system
z is discretized by function η(z) into a stream of tokens ζ

for the parser to read. Based on the sequence of tokens seen
so far, the parser picks the correct production to expand at
each step. The semantic rule for that production uses the
history of continuous z values to generate the command u.
The Motion Grammar and Motion Parser are defined in Fig.
3. The Motion Grammar represents the language of robot
sensor readings. The Motion Parser is an interpreter that
translates the language of sensor readings into the language
of controllers or actuator commands.

The Motion Grammar:
GM , is a tuple GM = (Z ,Z,U ,η ,V,P,K,S):

Z space of robot sensor readings
Z set of tokens representing robot state
U space of robot commands
η tokenizing function, η : Z 7→ Z
V set of nonterminals
P set of productions
K set of semantic rules, each associated with

one and only one production.
S ∈V start variable

The Motion Parser:
The Motion Parser is a program that recognizes the
language specified by the Motion Grammar and
executes the semantic rules for each production.

Fig. 3. Definition of the Motion Grammar.

Semantics in the Motion Grammar are defined using
attributes, which are parameters associated with each token
and nonterminal. The attributes of tokens are continuous-
valued sensor readings. In some production A→ X0 . . .Xn,
the associated semantic rule k ∈ K calculates the values to
assign to the attributes of A and each Xi. These calculated
values are functions of other attributes in the production.
Ultimately, the parser reaches a semantic rule to calculate
the robot’s input u ∈U , and sends this value to the robot.

We emphasize that the Motion Grammar is not a Domain
Specific Language or Robot Programming Language [32] but
rather the direct application of linguistic theory to the prob-
lem of robot control. The language described by the Motion
Grammar is that of the robotic system itself. Our notation for
this grammar, as presented in the figures, is in Backus-Naur
Form augmented with semantic rules [33]. Nonterminals are
represented between angle brackets 〈〉, tokens are represented
between floor brackets bc, and semantic rules are represented
between curly braces {}.

1) General Application to Robotic Systems: A Motion
Grammar for any given task is developed based on the
task specification and the robot hardware to be used. The
spaces U and Z are the inputs and sensors that the
robot possesses. The token set Z should be designed as
the collection of events, timeouts, and discrete state that
may occur during task execution. The system designer must
create the tokenizing function η to map from Z to Z.
Then, the nonterminals V and productions P can be created
by hierarchically decomposing the task into progressively
simpler subtasks until finally bottoming out in a continuously
valued control-loop. After the productions, the semantic rules
K for each production are created to perform calculations
over the attributes of the tokens and nonterminals in the
production until the bottom of the control loops where
the calculated command is sent to the robot. Finally, the
start variable S is selected from V as the top level of the
hierarchical decomposition, and the grammar is completed.

2) Benefits of The Motion Grammar: We use a Context-
Free model for the Motion Grammar because it represents
an appropriate balance between power of the computational
model and provability of the resulting system. Regular lan-
guages are a simpler representation whose response can be
just as easily proven, but they are very limited in repre-
sentation. Context-Sensitive Languages are somewhat more
powerful than Context-Free, but the Context-Sensitive deci-
sion problem is PSPACE-Complete. Recursively-enumerable
languages are very powerful, but by Rice’s Theorem, any
nontrivial property of a Turing Machine is unprovable [10].
Because Context-Free languages maintain provable proper-
ties and can be parsed in polynomial time, they are an
appropriate representation for robotic systems that must
operate in real-time and whose behavior should be provable.

3) Completeness: The formulation of the controller as a
grammar allows us to guarantee that the robot will respond
to all situations. By enumerating the nonterminals and the
productions for each nonterminal, one can determine which
tokens would cause a syntax error in expanding any nonter-

minal. If there exists a possible syntax error in expanding
nonterminal v∈V and the robotic system is actually capable
of producing the offending string σ during expansion of v,
we must extend the grammar to handle this additional case.
This is done by adding a production for v to handle σ . In
turn, this may require the addition of further nonterminals
and productions. We propose this iterative strategy as a novel
method for ensuring that a robot will never get stuck.

IV. GRAMMARS FOR HUMAN-ROBOT CHESS

A. Experimental Setup

We performed our experiments using a Schunk LWA3 7-DOF
robot arm with a Schunk SDH 7-DOF, 3-fingered hand as
shown in Fig. 1. A wrist mounted 6-axis force-torque sensor
and finger-tip pressure distribution sensors provided force
control feedback. The robot manipulated pieces in a standard
chess set, and a Mesa SwissRanger 4000 mounted overhead
allowed it to locate the individual pieces. Domain-specific
planning of chess moves was done with the Crafty chess
engine [34]. The perception, motion planning, and control
software was implemented primarily in C/C++ and Common
Lisp using message-passing IPC via shared memory and TCP
running on Ubuntu Linux 10.04. The lowest-levels of our
grammatical controller operate at a 1kHz rate.

TABLE I
CHESS GRAMMAR TOKENS

Sensor Tokens

Token η(z) Description
b0c t < t1 ∨‖x−x1‖> εx ∨‖q̇‖> εq̇ Not at Traj. End
b1c ¬b0c At Traj. End
blimitc ‖F‖> Fmax Force Limit
bgraspedc

∫
ρdA > ε∫ ρ Pressure sum limit

bungraspedc ¬bgraspedc Pressure sum limit

Chessboard Tokens

Token Description
bsetc board is properly set
bmovedc opponent has completed move
bcheckmatec checkmate on board
bresignc a player has resigned
bdrawc players have agreed to draw
bcycle(x)c x is in a cycle of visited during

Perception Tokens

Token η(z) Description
bobstaclec w(C)< wk Robot workspace occupied
boccupied(x)c w(x)> wmin Piece is present in x
bclear(x)c ¬boccupied(x)c No piece in x
bfallen(x)c height(x)< hmin Piece is fallen
boffset(x)c mean(x)−pos(x)> ε Piece is not centered
bmovedc Cr 6=Cc Boardstate is different
bmisplaced(x)c Cr(x) 6=Cc(x) Piece is missing

1) Tokenizing: The tokens in the Motion Grammar for
Chess are based on both the sensor readings and chessboard
state. A summary of token types is given in Table I. Position
thresholds, velocity thresholds, and timeouts indicate when
the robot has reached the end of a trajectory. Force thresholds
and position thresholds indicate when the robot is in a safe
operating range.

�
�

�
�

〈G〉 → 〈GD〉 | 〈GL〉 (1)

〈GD〉 → b1c | 〈κ〉〈GD〉 (2)

〈GL〉 → blimitc | 〈κ〉〈GL〉 (3)

〈κ〉 → b0c {q̇ = J∗ (ẋ−Kp (x−xr)−K f (F−Fr))} (4)

Fig. 4. Grammar fragment for guarded moves

〈G〉()
1 switch
2 case b0c :
3 call〈κ〉
4 return call〈G〉
5 case b1c :
6 return 〈GD〉
7 case blimitc :
8 return 〈GL〉

(a) Nonterminal 〈G〉

〈κ〉()
1 xe = x−xr
2 Fe = F−Fr
3 ẋr = ẋ−Kpxe−K f Fe
4 q̇ = J∗xr

(b) Nonterminal 〈κ〉

Fig. 5. Parser for Cartesian Trajectory Control

2) Parsing: Once the Motion Grammar for the task is
developed, it must be transformed into the Motion Parser.
For our chess application, we used a hand-written recursive
descent parser, an approach also employed by GCC [35].
A recursive descent parser is written as a set of mutually-
recursive procedures, one for each nonterminal in the gram-
mar. Each procedure will fully expand its nonterminals
via a top-down, left-to-right derivation. This approach is
a good match for the Motion Grammar’s top-down task
decomposition and its left-to-right temporal progression.

B. Example: Trajectory Control

To move the LWA3, we used Cartesian space parabolic
blends [32] with a damped least squares Jacobian inverse
J∗ [36]. To prevent damage to equipment and injury to indi-
viduals, we implemented guarded moves based on feedback
from the wrist Force-Torque sensor. The entire controller is
expressed in the grammar in Fig. 4.

In Fig. 4, line (1) indicates the controller nonterminal
〈G〉 can expand to a nonterminal that reaches its destination
〈GD〉 or a nonterminal that reaches a limit 〈GL〉. Line
(2) indicates that 〈GD〉 can either expand to a token b1c
indicating the destination is reached or to nonterminal 〈κ〉
followed by recursing on itself. Line (3) indicates that 〈GL〉
can either expand to a token blimitc indicating a force
limit or to nonterminal 〈κ〉 followed by recursing on itself.
Line (4) indicates that nonterminal 〈κ〉 expands to token
b0c indicating the destination is not yet reached and then
it executes the semantic rule to calculate the desired joint
velocities using the Jacobian damped inverse J∗ from a feed-
forward velocity ẋ and linear feedback terms for position x
and force F.

This grammar fragment is implemented using the pro-
cedures in Fig. 5. Procedure 〈G〉 implements productions
(1) to (3). Procedure 〈κ〉 implements the semantic rule in
production (4).

-14

-12

-10

-8

-6

-4

-2

 0

 2

 0 5 10 15 20 25

F
o

rc
e

 (
N

)

Time (s)

X
Y
Z

force limit

(a) Forces (b) Contact

Fig. 6. Grammatical guarded moves safely protecting the human player.

�

�
	〈recover : x,z〉 → 〈GD : x〉〈pinch〉〈GD : x+h(z)k̂,

π

6
〉〈release〉

〈pinch〉 → bgraspedc | bungraspedc〈pinch〉

Fig. 7. Grammar fragment for recovering fallen pieces

V. EXPERIMENTAL RESULTS

A. Guarded Moves

Our implementation of guarded moves using the Motion
Grammar allows the human and robot to safely operate in
the same workspace. When the parser detects a force limit, it
stops and backs off, preventing damage or injury. The plot in
Fig. 6(a) shows the forces encountered by the robot in this
situation. The large spike at 4.7s occurs when the robot’s
end-effector makes contact with the human’s hand pictured
in Fig. 6(b). Production (3) of our grammar guarantees that
when this situation occurs, the robot will stop. The robot can
then safely reattempt its move after the human removes his
hand from the piece.

This example shows the importance of fast online control
that is possible using the Motion Grammar. The robot must
respond immediately to the dangerous situation of impact
with the human. The polynomial runtime performance of
Context-Free parsers means that the grammatical controller
can respond quickly enough, and the syntax of the grammar
guarantees that the robot will stop moving.

B. Fallen Pieces

The grammar to set fallen pieces upright has a fairly simple
structure but builds upon the previous grammars to perform
a more complicated task, demonstrating the advantages of a
hierarchical decomposition for manipulation. This grammar
is shown in Fig. 7, and Fig. 8 shows a plot of the finger
tip forces and pictures for this process. The production
〈recover : x,z〉 will pick up fallen piece z at location x.
The nonterminal 〈GD : x〉 moves the arm to location x.
The production 〈pinch〉 will grasp the piece by squeezing
tighter until the fingertip pressure sensors indicate a sufficient
force. The production 〈GD : x+h(z)k̂, π

6 〉 will lift the piece
sufficiently high above the ground and rotate it so that it can
be replaced upright. Finally the nonterminal 〈release〉 will
release the grasp on the piece setting it upright.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

N
o
rm

a
liz

e
d
 T

o
u
c
h
 F

o
rc

e

Time (s)

gripped

lift

rotate

release

(a) Touch Force: Knight

(b) Grasped, Rook (c) Rotated, Queen (d) Finished, Bishop

Fig. 8. Robot recovering fallen pieces�
�

�
�

〈reset board〉 → bsetc |bmisplaced(x)c〈reset : x,home(x)〉
〈reset : x0,x1〉 → bclear(x1)c〈move : x0,x1〉

| boccupied(x1)c〈reset : x1,home(x1)〉〈move : x0,x1〉
| bcycle(x1)c〈move : x1, rand()〉

Fig. 9. Grammar fragment to reset chessboard

C. Board Resetting

The problem of resetting the chess board presents an interest-
ing grammatical structure. If the home square of some piece
is occupied, that square must first be cleared before the piece
can be reset. Additionally, if a cycle is discovered among the
home squares of several pieces, the cycle must be broken
before any piece can be properly placed. The grammatical
productions to perform these actions a given in Fig. 9.

An example of this problem is shown in Fig. 10(a) where
all of Blacks’s Row 8 pieces have been shifted right by one
square. The parse tree for this example is shown in Fig.
10(c), rooted at 〈reset board〉. As the robot recurses through
the grammar in Fig. 9, chaining an additional 〈reset〉 for
each occupied cell, it eventually discovers that a cycle exists
between the pieces to move. To break the cycle, one piece,
Nc1, is moved to a random free square, χ . With the cycle
broken, all the other pieces can be moved to their home
squares. Finally, Nχ can be moved back to its home square.
This sequence of board state tokens and 〈move〉 actions can
be seen by tracing the leaves of the parse tree, shown also
beginning from PLAN in Fig. 10(c).

Observe that as the parser searches through the chain of
pieces that occupy each other’s home squares, it is effectively
building up a stack of the moves to make. This demon-
strates the benefits of the increased power of Context Free
Languages over the Regular languages commonly used in
other hybrid control systems. Regular languages, equivalent
to finite state machines, lack the power to represent this
arbitrary depth search.

8srmbjqan
h g f e d c b a

8snaklbmr
h g f e d c b a

(a) Board position - Initial (b) Board position - Final

〈reset bd〉

bmispl(Rg8)c

〈reset : Rg8a8〉

boccupied(a8)c 〈reset : Na8b8〉

boccupied(b8)c 〈reset : Bb8c8〉

boccupied(c8)c 〈reset : Qc8d8〉

boccupied(d8)c 〈reset : Kd8e8〉

boccupied(e8)c 〈reset : Be8f8〉

boccupied(f8)c 〈reset : Nf8g8〉

bcycle(g8)c 〈move : Nf8χ〉

〈move : Be8f8〉

〈move : Kd8e8〉

〈move : Qc8d8〉

〈move : Bb8c8〉

〈move : Na8b8〉

〈move : Rg8a8〉

〈reset bd〉

bmispl(Nχ)c 〈reset : Nχg8〉

bclear(g8)c 〈move : Nχg8〉

〈reset bd〉

bsetc

PLAN

1.Nf8χ

2.Be8f8

3.Kd8e8

4.Qc8d8

5.Bb8c8

6.Na8b8

7.Rg8a8

8.Nχg8

(c) Motion grammar parse tree and plan for resetting the board.

Fig. 10. Example of board resetting

Claim 1: Let n be the number of misplaced pieces on the
board. The grammar in Fig. 9 will reset the board with at
most 1.5n moves.

Proof: Every misplaced piece not in a cycle takes one
move to reset to its proper square. Every cycle causes one
additional move in order to break the cycle. A cycle requires
two or more pieces, so there can be at most 0.5n cycles. Thus
one move for every piece and one move for 0.5n cycles give
a maximum of 1.5n moves.

D. Perception and Board Tokens

To play the game of chess, we integrated our controller with
the Crafty [34] chess engine. The Crafty boardstate serves
as the model of the position of the chessboard. The MESA
SR4000 point cloud is discretized by clustering to generate
the tokens given in Table I. We use a finite moving average
filter over the point cloud to remove sensor noise.

Obstacles are found in the point cloud C by a weighting
function w(C) which finds out if the workspace above the

(a) Detecting obstacle (Black points are obstacles. Red/Green
points indicate the orientation of each fallen piece.)

(b) Finding offsets for all pieces

Fig. 11. Perception with point cloud is discretized into tokens.

chessboard is occupied or not. An example of an obstacle
is shown in Fig. 11(a). We give the following attributes to
each cluster in the point cloud: the weight of the cluster,
the height of the cluster from the chessboard, the maximum
area occupied by a cross section parallel to the chessboard,
and the mean of the cluster. Here, the weight is denoted by
w(.), and it counts the number of points in that cluster. The
height of the cluster is the highest point in the cluster. The
maximum area occupied by the chess piece is expressed as
a ratio of its width and length. If the ratio is above a certain
threshold, we can easily conclude that a chess piece is fallen.
The longest side of the chess piece gives its orientation. The
mean point gives the center of the chess piece. Fig. 11 shows
these attributes in the point cloud.

If an obstacle is found, it is denoted by bobstaclec. Nearest
Neighbor over the entire chessboard determines all squares
x with boccupied(x)c. If a piece is not placed exactly in
the center of the square, an offset is computed and denoted
by boffset(x)c. The boardstate retrieved from perception is
termed Cr and the one from the Crafty engine is Cc. Cr
is with Cc reported by Crafty to find whether a move has
been made. If a move has been made, then bclear(x)c and
bmisplaced(x)c are determined. Our perception algorithm
also finds out the height, orientation, and the area occupied
by a horizontal cross-section for each piece. Using this and
a recursive nearest neighbor algorithm for clustering, we can
find all bfallen(x)c as shown in Table I.

'

&

$

%

〈game〉 → 〈act〉〈end〉 | 〈act〉〈game′〉
〈game′〉 → 〈wait〉〈end〉 | 〈wait〉〈game〉
〈end〉 → bcheckmatec | bresignc | bdrawc
〈act〉 → 〈fix〉〈turn〉〈fix〉
〈fix〉 → 〈end〉 | bfallen : x,zc〈recover : x,z〉〈fix〉 | ε

〈turn〉 → 〈move : x0,x1〉 | 〈capture : x0,x1〉
| 〈castle〉 | 〈castle queen〉 | 〈en passent〉
| 〈resign〉 | 〈draw〉

〈wait〉 → bmovedc | 〈wait〉
〈move : x0,x1〉 → 〈grasp piece : x0〉〈place piece : x1〉
〈grasp piece : x〉 → 〈GL : x〉〈grasp piece : x〉 | 〈GD : x〉〈grip〉
〈place piece : x〉 → 〈GL : x〉〈place piece : x〉 | 〈GD : x〉〈ungrip〉

〈grip〉 → bgraspedc | bungraspedc〈grip〉
〈capture : x0,x1〉 → 〈take : x1〉〈move : x0,x1〉

〈take : x〉 → 〈move : x,offboard〉
〈castle〉 → 〈move : Ke1g1〉〈Rh1f1〉

〈castle queen〉 → 〈move : Ke1c1〉〈Ra1d1〉
〈en passent : x〉 → 〈take : x−1〉〈move : px〉

〈resign〉 → 〈GL : K+1〉〈resign〉 | 〈GD : K+1〉〈resign′〉
〈resign′〉 → 〈GL : K−1〉〈resign′〉 | 〈GD : K−1〉

Fig. 12. Grammar Productions for Chess Game

E. Full Game

The entire motion planning and control policy is specified
in the grammar in Fig. 12. This grammar describes the
game, 〈game〉, as consisting of an alternating sequence of the
robot moving, 〈act〉, followed by the human moving, 〈wait〉,
until the game has ended, 〈end〉, via checkmate, resignation,
or draw. When it is the robot’s turn, it will correct any
fallen pieces, 〈fix〉, make its move, and then again correct
any pieces that may have fallen while it was making the
move. Making a move, 〈turn〉, can be either a simple move
between squares, a capture, a castle, en passent, or a draw
or resignation. A simple piece move, 〈move〉, requires first
grasping the piece, then placing it on the correct square. To
grasp the piece, the robot will move its hand around then
piece then tighten its grip, 〈grip〉, until there is sufficient
pressure registered on the touch sensors. To capture a piece,
the robot will remove the captured piece from the board,
〈take〉, and then move the capturing piece onto that square.
A 〈castle〉 requires the robot to move both the rook and the
king. For 〈en passent〉, the robot will 〈take〉 the captured
pawn and then move its own pawn to the destination square.
Finally, to resign – indicating a failure in chess strategy,
not motion planning – the robot moves its end-effector
through the square occupied by the king, knocking it over.
By following the rules of this grammar, our system will play
chess with the human opponent.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel approach for planning and
control using grammars. We have demonstrated the capabil-
ities of our Motion Grammar for the manipulation of chess
pieces in interactive human-robot gameplay representing the
entire controller with 18 tokens, 26 nonterminals, and 51
productions. The Motion Grammar provides safe and reliable
performance with low computational overhead. This same

approach can be used for both the realtime control in Fig. 6
and fast deliberative planning in Fig. 10.

We will continue applying the Motion Grammar to new
systems, particularly those requiring hybrid control ap-
proaches and those where guarantees on performance and
reliability are critical. Additionally, we will extend the un-
derlying theoretical basis of the Motion Grammar to increase
its flexibility and strengthen the guarantees it can provide,
and we will develop tools to simplify and automate the
construction of grammars and parsers.

ACKNOWLEDGMENTS

The impetus for our experiments in the chess domain comes
from work led by Hyun-Soo Yi on Golem Chesster which
took 2nd place at the 2010 AAAI Robot Chess Challenge.

REFERENCES

[1] N. Dantam and M. Stilman, “The motion grammar: Linguistic percep-
tion, planning, and control,” College of Computing, Georgia Institute
of Technology, Tech. Rep. GT-GOLEM-2010-001, 2010.

[2] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
journal of robotics and automation, vol. 2, no. 1, pp. 14–23, 1986.

[3] R. Arkin, Behavior-Based Robotics. MIT press, 1999.
[4] R. Pack, “IMA: The intelligent machine architecture,” Ph.D. disserta-

tion, Vanderbilt University, 2003.
[5] Arkin, R.C., “Governing lethal behavior: Embedding ethics in a hybrid

deliberative/reactive robot architecture,” in ACM/IEEE International
Conf. on Human Robot Interaction. ACM, 2008, pp. 121–128.

[6] S. Russell and P. Norvig, Artificial Intelligence: A modern Approach,
2nd ed. Prentice Hall, 2002.

[7] M. Littman, “Algorithms for sequential decision making,” Ph.D. dis-
sertation, Brown University, 1996.

[8] J. Earley, “An efficient context-free parsing algorithm,” Communica-
tions of the ACM, vol. 13, no. 2, pp. 94–102, 1970.

[9] E. Klavins, “A language for modeling and programming cooperative
control systems,” in IEEE Intl Conf. on Robotics and Automation,
vol. 4. IEEE; 1999, 2004, pp. 3403–3410.

[10] M. Sipser, Introduction to the Theory of Computation. Intl. Thomson
Publishing, 1996.

[11] E. Klavins, R. Ghrist, D. Lipsky, E. Departjment, and W. Seattle,
“A grammatical approach to self-organizing robotic systems,” IEEE
Transactions on Automatic Control, vol. 51, no. 6, pp. 949–962, 2006.

[12] G. Fainekos, H. Kress-Gazit, and G. Pappas, “Hybrid controllers for
path planning: a temporal logic approach,” in IEEE Conf. on Decision
and Control, 2005.

[13] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[14] M. Kloetzer and C. Belta, “Automatic deployment of distributed
teams of robots from temporal logic motion specifications,” IEEE
Transactions on Robotics, vol. 26, no. 1, pp. 48–61, 2010.

[15] C. Cassandras, Discrete-Event Systems, 2nd ed. Springer, 2008.
[16] E. Frazzoli, M. Dahleh, and E. Feron, “Maneuver-based motion

planning for nonlinear systems with symmetries,” IEEE Transactions
on Robotics, vol. 21, no. 6, pp. 1077–1091, 2005.

[17] R. Brockett, “Formal languages for motion description and map
making,” Robotics, vol. 41, pp. 181–191, 1990.

[18] M. Egerstedt, “Motion description languages for multi-modal control
in robotics,” Control Problems in Robotics, pp. 74–90, 2002.

[19] M. Egerstedt, T. Murphey, and J. Ludwig, “Motion programs for
puppet choreography and control,” in Hybrid Systems: Computation
and Control. Springer, 2007, pp. 190–202.

[20] V. Manikonda, P. Krishnaprasad, and J. Hendler, “Languages, behav-
iors, hybrid architectures and motion control,” Mathematical Control
Theory, pp. 199–226, 1998.

[21] D. Hristu-Varsakelis, M. Egerstedt, and P. Krishnaprasad, “On the
structural complexity of the motion description language mdle,” in
IEEE Conf. on Decision and Control, 2003, pp. 3360–3365.

[22] A. De Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger,
“Collision detection and safe reaction with the DLR-III lightweight
manipulator arm,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems, 2006, pp. 1623–1630.

[23] A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi, “An atlas of
physical human-robot interaction,” Mechanism and Machine Theory,
vol. 43, no. 3, pp. 253–270, 2008.

[24] M. Giuliani, C. Lenz, T. Müller, M. Rickert, and A. Knoll, “Design
principles for safety in human-robot interaction,” Intl. Journal of Social
Robotics, pp. 1–22, 2010.

[25] K. Fu, Syntactic Pattern Recognition and Applications. Prentice Hall,
1981.

[26] F. Han and S. Zhu, “Bottom-up/top-down image parsing by attribute
graph grammar,” in Intl. Conf. on Computer Vision, vol. 2, 2005.

[27] P. Koutsourakis, L. Simon, O. Teboul, G. Tziritas, and N. Paragios,
“Single View Reconstruction Using Shape Grammars for Urban En-
vironments,” in Intl. Conf. on Computer Vision, 2009.

[28] A. Toshev, P. Mordohai, and B. Taskar, “Detecting and parsing
architecture at city scale from range data,” in Intl. Conf. on Computer
Vision and Pattern Recognition, 2010.

[29] B. Stilman, Linguistic Geometry: From Search to Construction.
Kluwer Academic Publishers, 2000.

[30] L. Jones, A. Howden, M. Knighton, A. Sims, D. Kittinger, and
R. Hollander, “Robot computer chess game,” Aug. 1983, US Patent
4,398,720.

[31] D. Urting and Y. Berbers, “Marineblue: A low-cost chess robot,”
Robotics and Applications, pp. 76–81, June 2003.

[32] J. Craig, Introduction to Robotics: Mechanics and Control, 3rd ed.
Pearson, 2005.

[33] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles,
Techniques, & Tools, 2nd ed. Pearson, 2007.

[34] R. Hyatt, “CRAFTY–Chess Program,” ftp://ftp.cis.uab.edu/pub/hyatt,
1996.

[35] July 2010, http://gcc.gnu.org/gcc-3.4/changes.html.
[36] Y. Nakamura and H. Hanafusa, “Inverse kinematics solutions with sin-

gularity robustness for robot manipulator control,” Journal of Dynamic
Systems, Measurement, and Control, no. 108, pp. 163–171, 1986.

