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Abstract. This work combines semantic maps with hybrid control models, gen-
erating a direct link between action and environment models to produce a control
policy for mobile manipulation in unstructured environments. First, we generate
a semantic map for our environment and design a base model of robot action.
Then, we combine this map and action model using the Motion Grammar Calcu-
lus to produce a combined robot-environment model. Using this combined model,
we apply supervisory control to produce a policy for the manipulation task. We
demonstrate this approach on a Segway RMP-200 mobile platform.

1 Introduction

This paper provides an approach to generate robot policies by automatically com-
bining Semantic Mapping and Hybrid Control. Semantic mapping and hybrid
control are both effective approach within robotics. Semantic mapping produces
detailed models of unstructured environments [19, 26, 24, 20, 27]; however, this
approach provides no direct link to robot action. Hybrid models combine con-
tinuous and discrete robot dynamics to efficiently and verifiably represent robot
action [8, 6, 7, 2, 11, 4]; however, there is no automatic method to produce con-
trol models for large, complicated systems. While superficially, it appears that
semantic mapping and hybrid control are fundamentally different approaches,
they are actually closely related. The topological graph of a semantic map and
the discrete event system of a hybrid control model are both instances of formal
language. Thus, we propose to combine the linguistic representations of semantic
maps and robot action models to produce an efficient and verifiable control policy
for mobile manipulation in unstructured environments.
This work focuses on the application domain of service robots in human envi-
ronments. Previously, we developed new techniques for mapping using Semantic
SLAM [19, 26] and for hybrid systems using our Motion Grammar [8, 6, 7].
Here, we integrate these approaches to produce a combined robot-environment
action model. Then, we apply established methods in supervisory control [5] to
derive a robot control policy for a mobile manipulation task. This control design
approach formally guarantees that the resultant policy satisfies the task specifi-
cation. Finally, we demonstrate of this approach on a Segway RMP-200 mobile
robot.
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2 Related Work

Simultaneous Localization and Mapping (SLAM) is the concurrent pose estima-
tion of both the robot and objects in its environment. This is a well studied area
with many useful results. Smith and Cheeseman [23] proposed one of the first so-
lutions to the SLAM problem using the Extended Kalman Filter (EKF) to jointly
represent the landmark positions along with the robot pose. Folkesson and Chris-
tensen developed GraphSLAM [9], an efficient solution to the SLAM problem
which preserves landmark independence and is able to find loop closures through
nonlinear optimization. Semantic SLAM augments a map with semantically rele-
vant object labels. In this work, we utilize the Semantic SLAM method of Trevor
and Nieto [26, 27, 19] to compose a map and hybrid controller.
Hybrid Control is an ongoing research area describing systems with both dis-
crete, event-driven, dynamics and continuous, time-driven, dynamics. Ramadge
and Wonham [21] first applied Language and Automata Theory [13] to Discrete
Event Systems (DES). Hybrid Automata generally associate differential equa-
tions with each state of a Finite Automaton (FA). This method is well studied in
control [5, 14, 18, 11, 2]. In this paper, we model hybrid systems using the Motion
Grammar which represents continuous dynamics with differential equations and
discrete dynamics using a Context-Free Grammar (CFG) [8], and we extend the
hybrid approach by automating system modeling using semantic maps. Supervi-
sory control restricts the operation of a DES based on a linguistic specification.
This is applied to mobile robot motion planning with FA and Linear Temporal
Logic (LTL) by [4, 17]. In our approach, we apply supervisory control to CFGs.
Composition of multiple robot behaviors as FA is described in [16]. In this work,
we compose a robot model with an automatically generated map while preserv-
ing a system representation as a CFG to maintain verifiability and efficiency of
execution.
Model checking is the practice of verifying system behavior by modeling the
system and verifying that it satisfies a desired specification [3]. This approach is
applied to computer software [12] and motion planning for mobile robots [17]. [6]
summarizes the classes of models and specifications for which model checking
of robotic systems is decidable.
There are several related techniques and alternative approaches for the service
robotics domain. Topp and Christensen, [25, 24], provide a separation of regions
relating to a user’s view on the environment and detection of transitions between
them. O’Callaghan [20] developed a new statistical modeling technique for build-
ing occupancy maps by providing both a continuous representation of the robot’s
surroundings and an associated predictive variance employing a Gaussian pro-
cess and Bayesian learning. In this work we focus on integrating robot mapping
with hybrid control methods. The notion of affordances originated in Psychology
[10] to describe interaction between agents and environments and has previously
provided inspiration for robotics research [22]. We rather focus our approach on
direct symbol manipulation techniques with clear algorithmic implementation.

3 Background

The method of this paper produces a robot control policy for unstructured envi-
ronments by combining Simultaneous Localization and Mapping (SLAM) with



Hybrid Control. We combine these two approaches through Formal Language.
First, we produce a basic grammar for the robot’s actions and generate the map of
the environment via SLAM. Then we compose the action grammar and environ-
ment map using the Motion Grammar Calculus. Finally, we apply a supervisory
controller to generate the policy for the robot.
We now explain some background on formal language, define our hybrid systems
model, the Motion Grammar, and summarize the SLAM technique.

3.1 Formal Language

Formal language is the underlying representation we use to combine mapping
and hybrid control. Language and automata theory provide a rigorous method for
reasoning about the discrete dynamics of a robotic system. A formal language
is a set of strings. Strings are sequences of atomic symbols which we can use
to describe discrete events, predicates, locations, or actions within our system. A
grammar defines a formal language. We first briefly review some relevant points
of language theory. For a thorough coverage of formal language and its applica-
bility to robotic systems, please see [13, 5, 6].

Definition 1 (Context-Free Grammar, CFG). G = (Z, V, P, S) where Z is
a finite alphabet of symbols called tokens, V is a finite set of symbols called
nonterminals, P is a finite set of mappings V 7→ (Z ∪ V )∗ called productions,
and S ∈ V is the start symbol.

The productions of a CFG are conventionally written in Backus-Naur form. This
follows the formA→ X1X2 . . . Xn, whereA is some nonterminal andX1 . . . Xn

is a sequence of tokens and nonterminals. This indicates that A may expand to
all strings represented by the right-hand side of the productions. The symbol ε
is used to denote an empty string. For additional clarity, nonterminals may be
represented between angle brackets 〈〉 and tokens between square brackets [].
Grammars have equivalent representations as automata which recognize the lan-
guage of the grammar. This automata form provides a more convenient represen-
tation for some tasks, such as defining languages for maps in Sect. 4.1. The equiv-
alence of grammars and automata means that we can freely choose whichever
representation is most convenient. In the case of a Regular Grammar – where all
productions are of the form 〈A〉 → [a] 〈B〉, 〈A〉 → [a], or 〈A〉 → ε – the equiv-
alent automaton is a Finite Automaton (FA), similar to a Transition System with
finite state. A CFG is equivalent to a Pushdown Automaton, which is an FA aug-
mented with a stack; the addition of a stack provides the automaton with memory
and can be intuitively understood as allowing it to count.

Definition 2 (Finite Automata, FA). M = (Q,Z, δ, q0, F ), where Q is a finite
set of states, Z is a finite alphabet of tokens, δ : Q × Z 7→ Q is the transition
function, q0 ∈ Q is the start state, F ∈ Q is the set of accept states.

Definition 3 (Acceptance and Recognition). An automaton M accepts some
string σ if M is in an accept state after reading the final element of σ. The set of
all strings that M accepts is the language of M , LM , and M is said to recognize
LM .



Regular Expressions [13] and Linear Temporal Logic (LTL) [3] are two alter-
native notations for finite state languages. These representations are convenient
forms for defining supervisory controllers as in Sect. 4.3. The basic Regular
Expression operators are concatenation αβ, union α|β, and Kleene-closure α∗.
Some additional common Regular Expression notation includes ¬α which is the
complement of α, the dot (.) which matches any token, and α? which is equiv-
alent to α|ε. Regular Expressions are equivalent to Finite Automata and Regular
Grammars. LTL extends propositional logic with the binary operator until ∪ and
unary prefix operators eventually ♦ and always �. LTL formula are equivalent
to Büchi automata, which represent infinite length strings, termed ω-Regular lan-
guages. We can also write ω-Regular Expressions by extending classical Regular
expressions with infinite repetition for some α given as αω . These additional no-
tations are convenient representations for finite state supervisors.

3.2 The Motion Grammar

Next, we model robot action using the Motion Grammar (MG), giving an initial
set of hybrid control actions the robot can perform. MG represents the opera-
tion of a robotic system as a Context-Free language, augmenting a Context-Free
Grammar with additional variables to handle the continuous dynamics. We use
this combined representation to describe the operation of the full robotic system
[8, 6].

Definition 4. The Motion Grammar is a tuple
GM = (Z, V, P, S,X ,Z,U , η,K) where,
Z set of events, or tokens
V set of nonterminals
P ⊂ V × (Z ∪ V ∪K)∗ set of productions
S ∈ V start symbol
X ⊆ <m continuous state space
Z ⊆ <n continuous observation space
U ⊆ <p continuous input space
η : Z × P × N× 7→ Z tokenizing function
K ⊂ X × U × Z 7→ X × U × Z semantic rules

The Motion Grammar describes the language of the robotic system. The terminal
symbols of this language are robot events and predicates, representing a discrete
abstraction of the system path.
We use two properties to ensure the validity of a system modeled as a Motion
Grammar: completness and correctness. Completeness ensures that our model G
is a faithful representation of the physical system F . We define this property using
the simulation relation, that all paths in F are also paths in G. Correctness ensures
that our model G satisfies some desired property S. We define correctness using
the subset relation.

Definition 5. Given GM and system F then complete {G} ≡ F � GM

Definition 6. A Motion Grammar G is correct with respect to some specification
S when all strings in the language of G are also in S: correct {G, S} ≡ L(G) ⊆
L(S)



3.3 Semantic Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is the concurrent execution of
both Localization and Mapping on a robot. Localization means determining the
current position of the robot based on observations. Mapping means determining
the positions of objects in the environment based on observations. Typical SLAM
implementations combine odometry and other geometric measurements such as
point clouds or camera features to simultaneously produce an estimate of the
position of both the robot and objects. Using this technique, the robot models
unstructured environments.
Our mapping system identifies surfaces and connected free spaces in the world
[26, 27]. We use the surfaces, such as walls and tables, to localize the robot based
on its relative position to these object. We represent free spaces as Gaussian re-
gions in <3 with mean at the center of the free space and standard deviation in-
dicating the dimensions of the free space [19]. Topological connections between
these Gaussian regions indicate connected free spaces in the environment. For ex-
ample, a door or hallway between two rooms would connect the Gaussian regions
for those rooms.
We then extend the metric and topological information of the map surfaces and
connected Gaussians with additional semantic information by labeling each of
the Gaussian regions. These Semantic Maps provide useful information for navi-
gation and localization of the robot. In addition, the semantic content of the map
permits higher-level reasoning about the spatial regions of the environment. We
exploit this semantic information in our composition of the map with a grammar
for robot action.

4 Composing Maps and Grammars

Policy G′Supervisor G ∩ SSystem G

Spec. S

MGC G0  G

Map M

Action G0

Fig. 1. Sequence of operations to generate policy.

We produce the control policy for the robot by composing a semantic map and a
base action grammar, following Fig. 1. We will explain this approach using the
example map for the Georgia Tech Aware home, Fig. 2(a), and the base grammar
for mobile manipulation, Fig. 2(b). First, we convert the map graph into a gram-
mar for the map language. Then, we compose the map grammar and the action
grammar using the Motion Grammar Calculus (MGC) to model the robotic sys-
tem operating within the mapped environment. Finally, we produce a task policy
by applying a supervisory controller to this system model.



HALLKITCHEN

BEDROOM

GARAGE

LIVING ROOM

BATHROOM

(a) Semantic Map M

�

�

�

�
〈S〉 → [room] 〈S〉
| [object] [pick] 〈S′〉

〈S′〉 → [room] 〈S′〉
| [place] 〈S〉

(b) Base Grammar G0

Fig. 2. Example of Semantic Map M and base manipulation grammar G0. This map represents
the Georgia Tech Aware Home.

4.1 Map Languages

To better analyze the semantic map, we first represent this map using formal
language. The Gaussian free space regions of the map are arranged in a graph,
indicating connectivity between these regions. The graph for the Aware Home is
Fig. 2(a). This graph is equivalent to a Regular Language representing the set of
all traces through the map.

Definition 7. Let Map M = (N,V ), where N is a finite set of location symbols,
and V ⊂ N ×N is the set of adjacent symbols ni → nj .

We can transform any MapM into a regular grammar. We note that when analyz-
ing Finite Automata, the language symbols are typically given along transitions
[13, 1] wheres in a map, location symbols mark a state. For regular languages,
these two conventions – terminal language symbols on states and terminal lan-
guage symbols on edges – are equivalent. Algorithm 1 transforms the state ter-
minal map to an edge terminal automaton. Then, we can directly convert this
automaton to a Regular Grammar.
We demonstrate the conversion for the map in Fig. 2(a). First, we apply Algo-
rithm 1 to produce a FSM from the map graph. Since the output of this algorithm
is a Nondeterminisic Finite Automaton with more than the minimum necessary
number of states, we convert the NFA to a DFA [1, p152] and minimize the num-
ber of DFA states with Hopcroft’s Algorithm [1, p180]. This result is Fig. 3(a).
Note that in this example, we save two states over the original map in Fig. 2(a).
Finally, we convert the FSM to the Regular grammar in Fig. 3(b).

4.2 Composition using the Motion Grammar Calculus

In order to semantically merge the robot and environment models, we apply our
Motion Grammar Calculus (MGC). MGC is a set of rewrite rules for hybrid sys-
tems modeled in the Motion Grammar [7]. According to these rules, we extend
our action grammar with each map symbol while maintaining only those transi-
tions allowed by the map. While supervisory control can only operate to restrict
system G using existing symbols, the MGC crucially describes how to introduce
new symbols into G. There are two relevant rewrite rules from the MGC that we
use here.



Algorithm 1: State to Edge Symbols
Input: Q ; // Initial States
Input: E : Q×Q ; // Initial Edges
Output: Q′ ; // Final States
Output: Z′ ; // Edge Symbols
Output: E′ : Q′ × Z′ ×Q′ ; // Final Edges
Z′ = Q;1
Q′ = E ;2
E′ = ∅;3
forall q ∈ Q do4

forall (ei = Q→ q) ∈ E do5
forall (ej = q → Q) ∈ E do6

E′ = E′ ∪ ei
q−→ ej7
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〈0〉 → [hall] 〈1〉
〈1〉 → [bathroom] 〈0〉

| [bedroom] 〈0〉
| [garage] 〈0〉
| [livingroom] 〈2〉

〈2〉 → [hall] 〈1〉
| [kitchen] 〈3〉

〈3〉 → [livingroom] 〈2〉

(b) Map Grammar

Fig. 3. Representing maps with formal language.



Transform 1 (Symbol Splitting) Given some ζ0 = [x ∈ R0] ∈ Z, create to-
kens ζ1 = [x ∈ R1] and ζ2 = [x ∈ R2] such thatR1 ∪R2 = R0 ∧R1 ∩R2 =
∅ and update token set Z′ = Z − ζ0 ∪ {ζ1, ζ2}. The new nonterminal set
is V ′ = V ∪ {A0, A1, A2, A3, A4}. The new production set is P ′ = P −
{(A→ α1ζ0κα2) ∈ P}∪{(A→ α1A0) , (A0 → A1|A2) : (A→ α1ζ0κα2) ∈ P}
∪ {(A1 → ζ1κA3) , (A2 → ζ2κA4) : (A→ α1ζ0κα2) ∈ P}
∪ {(A3 → A2|α2) , (A4 → A1|α2) : (A→ α1ζ0κα2) ∈ P}.

Transform 2 (Adjacency Pruning) For p1 = A→ rAκAB, B → β1| . . . |βn,
if rA is not adjacent toR0(βn) WLOG, then P ′ = P − p1 ∪{A→ rAκAB

′}∪
{B′ → β1| . . . |βn−1}

By applying these transforms, we can introduce the map symbols into the action
grammar while preserving the validity of the model. Each derivation step main-
tains the completeness of the model according to the path of the hybrid system.
By assuming that the initial model is complete, this ensures that all derived mod-
els are also complete. For the remainder of the MGC and proofs of its correctness,
please see [7].
In addition to these two transforms, we also use the first() and follow() sets [1]
to define initial and adjacent symbols. The first() set defines all terminals which
may begin some derivation of a grammar symbol. The follow() set defines all
terminals which may appear immediately to the right of some symbol in a gram-
matical derivation [1][p221].

Definition 8 (First Set). Define first(X) for some grammar symbol X to be the
set of terminals which may begin strings derived from X .

Definition 9 (Follow Set). Define follow(X) for grammar symbol X to be the
set of terminals a that can appear immediately to the right ofX in some sentential
form.

Note that for map grammars such as Fig. 3(b), the follow set for each terminal
symbol is equivalent to the adjacent nodes in the map graph Fig. 2(a).

Proposition 1. Given a grammar G representing some map M , follow(z) of
some terminal symbol z of G represents the set of all map locations adjacent
to z.

Algorithm 2 describes how we apply these transforms to compose the Map and
Action grammars. First, we introduce all map symbols into the action gram-
mar by repeatedly splitting the initial terminal symbol of the action grammar
by direct application of Transform 1. Next, we prune out productions indicat-
ing transitions between non-adjacent map locations. To prune these productions,
we apply Transform 2 by intersecting the grammar with sets of allowable tran-
sitions. The disallowed transitions are indicated by the regular expression L =
(.∗z1ZA

∗z2.
∗) in line 8 of Algorithm 2. The complement of this regular expres-

sion defines all paths which do not move directly from z1 to z2. Since z1 and z2
are non-adjacent, intersecting with L will preserve only paths which do not con-
tain the disallowed transition. The result is a grammar which contains the original
action model and all permissible transitions from the semantic map.



Algorithm 2: Composing Map and Action Grammars
Input: (ZM , VM , PM , SM ) ; // Map Grammar
Input: (ZA, VA, PA, SA) ; // Action Grammar
Output: (Z, V, P, S) ; // Combined Grammar
(Z, V, P, S)← (ZA, VA, PA, SA) ;1
/* Add map symbols by splitting first(SA) */
z0 = first(SA);2
forall z ∈ ZM do3

(Z, V, P, S)← Transform 1 to split z0 into z and z04

/* Prune non-adjacent map symbols */
forall z1 ∈ ZM do5

forall z2 ∈ ZM do6
if z2 6∈ follow(z1) then7

(Z, V, P, S)← (Z, V, P, S) ∩ L {.∗z1ZA
∗z2.∗} ;8

We apply Algorithm 2 to combine the map grammar, Fig. 3(b), with the base
grammar for mobile manipulation, Fig. 2(b). In this process, the initial nonter-
minal of the base grammar, [room], is repeatedly split into all the symbols of
the semantic map. Then all transitions between non-adjacent map symbols are
pruned away. This produces the combined grammar of Fig. 4(a).

4.3 Supervisory Control

Finally, we use supervisory control to produce the policy G′ from our system
modelG and task specification S, [5, p133]. This application of supervisory con-
trol will permit only those transitions of the model G which are also contained in
specification S. We represent this as the intersection,

G′ = G ∩ S (1)

Given that G is Context-Free and S is Regular, we use the algorithm defined
in [13, p135] to produce Context-Free G′, ensuring that we can efficiently exe-
cute the policy given by G′. This algorithm operates on a Context-Free language
model for system G and a Regular language specification for correct operation
S with the assumption that we can block any undesirable transitions in G. The
corrected system language, then, is G′ = G ∩ S, where G′ is also Context-Free.
We note in addition that to prune non-adjacent regions permitted by Transform 2
in Algorithm 2, we apply this same language intersection operation.
We use supervisory control of the grammar in Fig. 4(a) to perform the desired
mobile manipulation task. To instruct the robot to bring an object from the kitchen
to the human in the bedroom, we construct our supervisor according to the regular
expressions in Fig. 4(b). Thus, our controlled system is,

G′ = G ∩
4⋂

i=0

Si = [h] [l] [k] [object] [pick] [l] [h] [b] [place] [h] (2)
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〈S0〉 → [h] 〈H〉
〈H〉 → [r] 〈R〉 | [b] 〈B〉 | [o] 〈O〉

| [d] 〈D〉 | [l] 〈L〉 | [object] [pick] 〈H′〉

〈B〉 → [h] 〈H〉 | [object] [pick] 〈B′〉

〈O〉 → [h] 〈H〉 | [object] [pick] 〈O′〉

〈R〉 → [h] 〈H〉 | [object] [pick] 〈R′〉

〈D〉 → [h] 〈H〉 | [object] [pick] 〈D′〉

〈L〉 → [h] 〈H〉 | [k] 〈K〉 | [object] [pick] 〈L′〉

〈K〉 → [l] 〈L〉 | [object] [pick] 〈K′〉

〈H′〉 → [r] 〈R′〉 | [b] 〈B′〉 | [o] 〈O′〉

| [d] 〈D′〉 | [l] 〈L′〉 | [place] 〈H〉

〈B′〉 → [h] 〈H′〉 | [place] 〈B〉

〈O〉 → [h] 〈H′〉 | [place] 〈O〉

〈R〉 → [h] 〈H′〉 | [place] 〈R〉

〈D〉 → [h] 〈H′〉 | [place] 〈D〉

〈L′〉 → [h] 〈H′〉 | [k] 〈K′〉 | [place] 〈L〉

〈K′〉 → [l] 〈L′〉 | [place] 〈K′〉

(a) Uncontrolled: G

– Let R = {[h] , [r] , [o] , [d] , [l]}
– Pick object in kitchen:

S0 = .∗ [k] (¬R)∗ [pick] .∗

– Place object in bedroom:
S1 = .∗ [b] [place] .∗

– Move the object only once:
S2 = (¬ [place])∗ [place]¬([pick])∗

– Let X = (¬ [x])∗ [x] (¬ [x])∗

– Don’t revisit rooms:
S3 =

⋂
[x]∈R X (([pick] | [place])X )∗

– End in the hallway: S4 = .∗ [h] $

(b) Supervisor: S'

&

$

%

〈S0〉 → [h] 〈H〉
〈H〉 → [l] 〈L〉
〈L〉 → [k] 〈K〉

〈K〉 → [object] [pick] 〈K′〉

〈K′〉 → [l] 〈L′〉

〈L′〉 → [h] 〈H′〉

〈H′〉 → [b] 〈B′〉

〈B′〉 → [place] 〈B′′〉

〈B′′〉 → [h]

(c) Controlled: G′

Fig. 4. Grammars for the Uncontrolled and Controlled mobile manipulator in the Aware Home.

5 Experiments

We implemented this approach on a Segway RMP-200 mobile platform as shown
in Fig. 5. This platform is equipped with an ASUS Xtion PRO LIVE camera,
providing RGBD information for plane and surface extraction and with a UTM-
30LX Hokuyo laser used to label the spatial regions as Gaussian models. It in-
cludes a Schunk parallel jaw gripper to manipulate objects. We conducted the
experiments in the Georgia Tech Aware Home [15] and RIM center.
For both of the home and office environments, we first drove the robot through
each area collecting 3D point clouds, laser, and odometry. Our mapper extracts
planes and surfaces in the environment, building the map and localizing the robot.
During the navigation, the robot partitions the environment into Gaussian regions.
This produces the Gaussian map in Fig. 6. Then, we annotate the Gaussian re-
gions of the map with semantic labels. The result is a graph, shown previously
for the Aware Home in Fig. 2(a) and also for the RIM center in Fig. 7. This
resulting map is suitable for both human interpretation and automatic symbol
manipulation.
Next, we apply the method described in Sect. 4 to generate the symbolic model
for the robot in each of the environments. For the Aware home, this model is given
in Fig. 4(a), and for the RIM center in Fig. 7. For the Aware Home, we asked the
robot to peform the following task, Collect a soda from the kitchen and bring it to
the bedroom, expressed as the specification in Fig. 4(b). For the RIM Center, we
apply a similar supervisor in Fig. 8(b) to collect a soda from kitchen and bring it
to library.
The policy for the task in the RIM environment, Fig. 8(c), is more complicated
than for the Aware Home, Fig. 4(c). This is because the RIM map contains mul-



(a) Aware Home (b) RIM Center (c) Picking

Fig. 5. Segway RMP-200 mobile platform in the Georgia Tech Aware, the RIM Center, and pick-
ing a soda can.

Fig. 6. Generated Semantic Maps for the Aware Home. In the map, black shows 3D robot model,
gray shows point clouds, yellow shows connected Gaussian regions (blue edges), and red shows
the surfaces.
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(c) RIM FSM

Fig. 7. Generated Semantic map of Georgia Tech RIM Center and the equivalent graph and Finite
Automata forms.

tiple paths between all rooms. Thus, all these possible paths are captured in the
control policy grammar. The result is the nine strings represented by the following
regular expression,

G′ = (k|rlfk|olfk) [pick] (fl|fosrl|srl) [place] (3)

These generated policies direct the robot along the path to complete the specified
task. For the Aware Home, the robot fetches the object from the kitchen and
delivers it to the bedroom, illustrated in Fig. 9. This figure shows the path of
the robot, both as a trajectory though the map and as the sequence of language
symbols.

6 Discussion

In this approach, we combine a Semantic Map and a Motion Grammar using the
Motion Grammar Calculus (MGC). This ensures the validity of our final sys-
tem model because each transform of the MGC preserves completeness of the
model. Then, applying a supervisory controller guarantees that the final policy is
correct with regard to the specification. Thus, the overall approach is correct-by-
construction in the sense that the final system model is guaranteed by the MGC
to simulate our initial system, and the resultant policy satisfies the supervisory
control specification.
The defining characteristic of this method is the uniform representation of the
set of all robot paths as a language with an explicit grammar. This representation
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〈S0〉 → [s] 〈S〉

〈S〉 → [r] 〈R〉 | [o] 〈O〉 | [k] 〈K〉 | [pick] 〈S′〉

〈O〉 → [s] 〈S〉 | [f] 〈F〉 | [pick] 〈O′〉

〈K〉 → [s] 〈S〉 | [f] 〈F〉 | [pick] 〈K′〉

〈F〉 → [o] 〈O〉 | [k] 〈K〉 | [l] 〈L〉 | [pick] 〈F′〉

〈L〉 → [f] 〈F〉 | [r] 〈R〉 | [pick] 〈L′〉

〈R〉 → [l] 〈L〉 | [s] 〈S〉 | [pick] 〈R′〉

〈S′〉 → [r] 〈R′〉 | [o] 〈O′〉 | [k] 〈K′〉
| [place] 〈S〉

〈O′〉 → [s] 〈S′〉 | [f] 〈F′〉 | [place] 〈O〉

〈K′〉 → [s] 〈S′〉 | [f] 〈F′〉 | [place] 〈K〉

〈F′〉 → [o] 〈O′〉 | [k] 〈K′〉 | [l] 〈L′〉
| [place] 〈F〉

〈L′〉 → [f] 〈F′〉 | [r] 〈R′〉 | [place] 〈L〉

〈R′〉 → [l] 〈L′〉 | [s] 〈S′〉 | [place] 〈R〉

(a) Uncontrolled: G

– Let R = {[s] , [k] , [o] , [f] , [l] , [r]}
– Pick object in kitchen:

S0 = .∗ [k] (¬R)∗ [pick] .∗

– Place object in library:
S1 = .∗ [l] [place] $

– Move the object only once:
S2 = (¬ [place])∗ [place]¬([pick])∗

– Let X = (¬ [x])∗ [x] (¬ [x])∗

– Don’t revisit rooms:
S3 =

⋂
[x]∈R X (([pick] | [place])X )∗

(b) Supervisor: S'

&

$

%

〈S0〉 → [s] 〈S〉
〈S〉 → [k] 〈K〉 | [r] 〈R〉 | [o] 〈OL〉

〈K〉 → [pick] 〈K′〉
〈R〉 → [l] 〈OL〉

〈OL〉 → [f] 〈F〉
〈F〉 → [k] 〈K〉

〈K′〉 → [f] 〈F′〉 | [s] 〈S′〉

〈F′〉 → [l] 〈L′〉 | [o]
[
O
′]

〈S′〉 → [r] 〈R′〉

〈O′〉 → [s] 〈S′〉

〈R′〉 → [l] 〈L′〉

〈L′〉 → [place]

(c) Controlled: G′

Fig. 8. Grammars for the Uncontrolled and Controlled mobile manipulator in the RIM Center.
Notice how the policy captures all possible paths through the environment that satisfy the speci-
fication.

Living Room

Kitchen

Hall
Bedroom

[h]

START

[l]

[k][object][pick]

[l] [h]

[b][place]

[h]

HALT

Fig. 9. Path of the robot following controller in Fig. 4(c) and (2), shown as robot enters the living
(green oval). Solid blue lines show the map connections between rooms, and dotted red lines
show the robot path.



allows iterative development of the grammatical control policy by the progressive
application of MGC transformations and supervisory control specifications. At
each step of this derivation, the mechanical application of the MGC transforms
and supervisory control ensures that we maintain a valid model of the system.
Furthermore, because the policy for each task is itself a grammar, we can compose
multiple individual task policies to produce a system to perform each of those
tasks, all within the same grammatical framework. We expect these capabilities
for incremental design and policy composition to be useful as we extend our work
to multiple tasks and more complicated systems with larger grammars.
While search-based motion planning could perform some of the tasks in this pa-
per, there are certain advantages given by our linguistic formulation and use of
supervisory control for policy generation. Random-sampling planners such as
RRTs and PRMs assume a continuous search space, while our application do-
main includes discrete features for detecting and manipulating objects. General
search based planning assumes an explicit goal state and produces a plan to reach
that state. In contrast, the linguistic approach considers the set of acceptable paths
and produces a policy to stay within that set of paths.

7 Conclusions and Future Work

In this work, we address two significant challenges faced by robot mapping and
hybrid controls. Robot mapping produces precise models of the environment, but
gives no direct link to robot action. Formal hybrid control models are precise, ver-
ifiable, and efficient representations of robot action, but developing these models
for large and complicated systems is a tedious task. The linguistic composition
demonstrated in this paper eases the challenges posed by each of these separate
approaches. Through the automatic, symbolic composition of a map and base hy-
brid model, we produce a verifiable and executable model of the whole robotic
system.
We will continue this work with in several ways. First, we will extend our im-
plementation of this method to a variety of mobile manipulation tasks. Next, to
provide a natural human interface for the mobile manipulation, we will compose
multiple task policies with a grammar for simple human utterances. Finally, to
increase the flexibility of this approach, we will extend the offline composition of
maps and grammars to online composition as the semantic map is acquired.
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not to afford: A new formalization of affordances toward affordance-based
robot control. Adaptive Behavior, 15(4):447–472, 2007.

[23] R. Smith and P. Cheeseman. On the representation and estimation of spatial
uncertainty. Intl. Journal of Robotics Research, 5(4):56–68, Winter 1987.

[24] E. A. Topp and H. I. Christensen. Detecting region transitions for human-
augmented mapping. IEEE Transactions on Robotics, pages 1–5, 2010.
ISSN 1552-3098.

[25] Elin A. Topp and Henrik I. Christensen. Topological modelling for human
augmented mapping. In IEEE/RSJ Intl.er Conf. on Intelligent Robots and
Systems, pages 2257–2263, Oct. 2006.

[26] A. J. B. Trevor, J. G. Rogers III, C. Nieto-Granda, and H.I. Christensen.
Tables, counters, and shelves: Semantic mapping of surfaces in 3d. In IROS
Workshop on Semantic Mapping and Autonomous Knowledge Acquisition,
2010.

[27] A. J. B. Trevor, J. G. Rogers III, and H.I. Christensen. Planar surface slam
with 3d and 2d sensors. In IEEE Intl. Conf. on Robotics and Automation,
2012.


