
IEEE International Conference on Robotics and Automation (ICRA), 2013

Planning in Constraint Space:
Automated Design of Functional Structures

Can Erdogan Mike Stilman

Abstract—On the path to full autonomy, robotic agents have to
learn how to manipulate their environments for their benefit. In
particular, the ability to design structures that are functional in
overcoming challenges is imperative. The problem of automated
design of functional structures (ADFS) addresses the question
of whether the objects in the environment can be placed in a
useful configuration. In this work, we first make the observation
that the ADFS problem represents a class of problems in
high dimensional, continuous spaces that can be broken down
into simpler subproblems with semantically meaningful actions.
Next, we propose a framework where discrete actions that
induce constraints can partition the solution space effectively.
Subsequently, we solve the original class of problems by searching
over the available actions, where the evaluation criteria for the
search is the feasibility test of the accumulated constraints.
We prove that with a sound feasibility test, our algorithm is
complete. Additionally, we argue that a convexity requirement
on the constraints leads to significant efficiency gains. Finally,
we present successful results to the ADFS problem.

I. INTRODUCTION

With increasing structural agility and computation power,
robotic agents have become viable options in real-life prob-
lems which cover a wide range of applications such as search
and rescue missions, space exploration and military operations.
Despite this surge of robotics, most robotic applications today
have extensive human intervention in the control of robot
behavior. Only a few agents function fully autonomously and
always in well controlled environments.

In this paper, we focus on the problem of automated
design of functional structures (ADFS). The ability to use
the objects in the environment to one’s benefit and construct
meaningful, functional structures is an imperative step towards
full autonomy. However, to be dependable, such planners have
to be complete, in the sense that they have to find a solution
to a given challenge if one exists. If such a guarantee can
be provided, a myriad of applications can benefit from these
planners such as building bridges autonomously in war zones,
creating and realizing designs to close deep ocean valves, as in
natural disasters, and the autonomous construction of human
environments in space exploration.

In an automated design process, a planner needs to make
two types of choices: (1) discrete choices to determine the
involvement of the objects in the environment, and (2) contin-
uous domain choices to determine the locations of the objects
in the design. The discrete choices have to be made on which
objects to include in the design and what role they would

The authors are with the Center for Robotics and Intelligent Machines
at the Georgia Institute of Technology, Atlanta, GA 30332, USA. Email:
cerdogan3@gatech.edu, mstilman@cc.gatech.edu

Fig. 1. An example of a robotic agent having designed and built a stable
structure to climb the obstacle G and avoid the hazardous flaming region.
Objects o1, o3 and o5 have 2 units of mass, where objects o2 and o4 have
6 and 3 units. The robot weighs 0.5 unit.

play, an abstract, rough description of their relationship to
other objects (i.e. on the ground or on another object). On
the other hand, a continuous choice is on where exactly an
object oi is and this variable can take an infinite number of
values: xi = 0.12 or xi = 0.1294. Usually, continuous choices
are discretized, i.e. xi can be either 0.12 or 0.13, but not
anything in between. However, such a limitation discounts all
the successful designs that have xi = 0.125 and invalidates
the completeness of a planner.

In the domain of automated design, the planner has to
consider both the discrete and continuous choices to design
a structure that is both stable and can be traversed to reach
the problem goal. An example challenge may include crossing
over hazardous areas and climbing up heights where structures
such as bridges and stairs need to be designed using the
available objects. Figure 1 demonstrates such an example
output of our work. The structure is guaranteed to be stable as
the agent traverses the structure to climb the goal structure G.
Note that the consideration of object masses enables a design
where a small but heavy object, o2, is used to counterbalance
the weight of the other objects.

A Complete Planner for Continuous Domains

The importance of level of discretization in efficiently limiting
the space of solutions has been studied carefully. A well-
known approach is to create a planning graph for the dis-
cretized space. In the graph, a node is a candidate solution and
an edge between two nodes n1, n2 represents an incremental
change to node n1 to transform it to its neighbor n2. The
problem then is reduced to finding a path from the start node
n0, i.e. an empty design, to a goal node nG which satisfies
the challenges of the domain. Such a path would dictate which

1



actions should be taken to reach the desired goal. Although the
reduction to a search problem is effective, finer discretizations
lead to more number of neighbors for each node. Thus, in
addition to being incomplete, the discretization approach also
suffers from having a large search space.

Assume that the planner already knows which objects to
place. Then, instead of limiting the space of object configu-
rations with discretization, the problem can be reformulated
as a feasibility problem where the challenges of the domain
are expressed as constraint equations whose variables denote
the locations of the chosen objects. In general, once the
correct actions are taken and the constraints are introduced
to the system, a sound feasibility test would return the desired
solution configuration if one exists. To this end, we frame the
design problem as a discrete search where the choices are only
on the roles of the objects in the design and use feasibility tests
to evaluate goal nodes. In this framework, a new action, i.e. a
discrete choice, adds new constraints to the space of feasible
configurations. For instance, if o1 is placed on o2, we have
the constraint ‘y1− y2 = 0.5(h1 + h2)’ which expresses the
fact that the height difference between the centers of the two
objects has to be half of their total height. The two problems
with the discretization approaches are avoided in this manner.

With our proposed approach, the high dimensional contin-
uous problem is reduced to finding a succession of actions
that would induce the correct constraints that represent a
functional design. The reformulation has two benefits. First,
given a sound feasibility test and a complete planner in discrete
space, the planner is guaranteed to find a solution if one
exists. Second, if constraints have simple forms, such as linear
equality and inequalities, then fast feasibility tests can be used
for performance. Thus, planning in the constraint space can be
guaranteed to be complete and can lead to significant progress
in efficiency over randomized or discretized approaches.

In the rest of this paper, we will formulate our approach and
present results in the domain of automated design. We make
the following contributions:

1) The reformulation of continuous space problems in
terms of discretized actions in constraint space

2) A complete planner for constraint space problems
3) The problem definition for the domain of autonomous

design of functional structures
4) The application of the approach to the ADFS domain

II. RELATED WORK

The ability to realize precise actions is important in several
areas of robotics and planning, such as medical robotics
and autonomous design. To consider more precise actions,
classical planning approaches discretize at higher levels of
detail. However, the increase in the higher ordered number
of such detailed actions leads to efficiency problems.

The essential shortcoming of classical planning approaches
in continuous domains is due to the idea of commitment. In
classical progression or regression search, the planner has to
commit to taking an action and evaluate all the possible out-
comes. In hierarchical task networks, with increasing problem

details, the planner has to commit to more number of problem
decompositions. Although the SAT planner and the graphPlan
algorithms avoid the problem of commitment, they still have
to consider increased number of combinations of actions [8].

The common approach to accommodate non-convex high
dimension continuous domains in the motion planning area
is the rapidly-exploring random tree (RRT) algorithm [6].
The baseline algorithm creates a tree in the problem space,
with the initial configuration as the root node, by choos-
ing random configurations and incrementally extending edges
towards them from the closest neighbor node on the tree.
Despite its clear advantages in efficiently covering the problem
space, the RRT suffers from the same source of shortcoming
as classical planning algorithms. The commitments to the
random configurations and the closest neighbors can lead to
(1) unrealistic and high costly paths [1] or (2) long run times
to find precise solutions (i.e. paths in cluttered worlds) [4].

A. Optimization in Planning

In this work, we further the ability of classical planning
approaches to accommodate high dimensional continuous do-
mains by introducing constraint optimization as a method to
evaluate candidate states. Particularly, we search for object
configurations in a convex continuous domain, a relaxation of
the non-convex problem specification of RRT’s. This relax-
ation allows the use of efficient optimization techniques.

The key idea is that with each discrete abstract action
choice, we partition the convex space and evaluate whether
there is a feasible solution in the partitioned spaces. After elim-
inating those without feasible solutions, we continue making
action choices until we reach a state that satisfies the abstract
goal specifications and obtain a feasible continuous solution
to the problem. Note that the convexity assumption allows for
global feasibility searches in the entire problem manifold and
so, guarantees the completeness of the planner.

Global and local optimization techniques have been heavily
used in the motion planning and manipulation areas. Khatib
showed that the design of a manipulator can be optimized
for by minimizing a cost function with respect to kinematic,
dynamic and actuator design parameters [5]. Buss et al.
reformulated the problem of correct grasping force for a
robotic hand in a constrained convex optimization setup and
developed real-time gradient flow algorithms [2]. To enable the
manipulation of constrained objects such as doors and shelves,
Stilman proposed a local gradient search method in the joint
space of the manipulator where the gradient is derived from
the task constraint errors [9]. Note that most of the work in
motion planning is strictly in non-convex configuration spaces
and do not necessarily partition into subproblems.

The optimization of continuous variables along with discrete
constraints has also been studied in operations research and
scheduling literature. Vidal and Geffner [10] propose a method
that uses temporal constraints to make powerful inferences
about the dependencies of the actions. In fact, our work re-
sembles the branch-and-bound constraint satisfaction approach
adopted for scheduling problems [3].

2



III. PROBLEM DEFINITION

Let O be the set of objects in the environment. Each object
oi ∈ O has three properties, {wi, hi,mi}, which stand for
the width, height and mass respectively. The configuration ~xi

of an object oi ∈ O is its position {xi, yi}. The orientations
are not included as continuous parameters to demonstrate the
efficiency of linear optimization tools. Otherwise, the rotation
angles with nonlinear trigonometric functions would induce
nonlinear constraints and invalidate linear approaches.

A. State and action representations

The idea is to represent a design with a set of abstract propo-
sitions. For example, {On(o0, o1), On(o1, o2)} represents a
design with object o0 on o1 and object o1 on o2. Note that
this representation is discrete and does not account for the
specific locations of the objects. In the initial state of the
problem, the robot is always on the ground, represented with
the literal At(ground). The planner has to find a path of
actions which ends up at a state where the literal At(goal)
exists. The definition of the goal location depends on a specific
problem. For example, it can be the top of a climbed obstacle
or the area beyond an hazardous region.

The set A(O) is the set of all possible actions in the
environment such as placing an object on the ground or
moving from one object to another. An action Ai ∈ A(O)
is defined with three sets of literals: preconditions P(Ai), the
add effects A(Ai) and the delete effects D(Ai). For an action
to be taken in a state S, all the literals in P(Ai) must exist in
S. After an action is taken, the literals in A(Ai) are added to
the state and those in D(Ai) are removed.

In Table I, we present the set of actions in the ADFS
domain. Note that when subsequent actions that move the
robot are taken, we assume that the robot traverses the distance
between the two locations. For instance after climbing above
from o1 to o2 and before jumping from o2 to o3, we assume
that the robot traverses the length of o2 successfully.

WalkFromGround(o1) Climbs to o1 from ground given OnGround(o1)
WalkAbove(o1,o2) Climbs to o2 from o1 given On(o2,o1)
WalkBelow(o1,o2) Goes down to o2 from o1 given On(o1,o2)
Jump(o1,o2) Drives over a gap from o1 to o2
PutOn(o1,o2) Puts o1 on o2 given Used(o2) and Unused(o1)
PutGround(o1) Puts o1 on ground given Unused(o1)

TABLE I
THE DESCRIPTIONS OF THE ADFS ACTIONS

The specification of constraints that govern the continuous
configuration variables are in the add effects of an action.
Figure 2 demonstrates two examples of actions along with
the constraints that they induce. Using the discrete, abstract
representation of designs, the planner performs a search,
looking for a goal state where all the state, the problem and
stability constraints are satisfied.

B. Space of solutions

A solution is a composition of two lists {XO∗ , AO∗}. The list
XO∗ is a list of configurations {~xi|oi ∈ O∗} where O∗ ⊂ O

Fig. 2. The example definition for two actions, PutOn(o1,o2) and
Jump(o1,o2), which put one object on another and drive the robot over a
gap between two objects, along with their effects in the environment.

is the set of objects that were used in the design. It represents
the final goal positions of the objects after optimization. Let
P(A(O)) be the set of permutations of feasible actions using
objects O. Then, the list AO∗ ∈ P(A(O∗)) is a list of actions
that leads to the building of the final design XO∗ and the
movement of the robot from its start state with the literal
At(ground) to the goal state with the literal At(goal).

IV. APPROACH

In the following, we discuss our approach in detail, particu-
larly: (1) the merits of having actions with literal state effects
and constraints, (2) the search strategy in constraint space, (3)
a simple example application, and (4) the pseudo-code.

A. Partitions of the Configuration Space
The reduction of the high dimensional continuous problem to
a discrete search problem is possible due to the two types of
effects that actions have. First, each action has logical state
literals that are built to describe the physical properties of
the structure and the location of the robot. These statements
specify a goal state for the search problem and in our case, a
state with the literal At(goal) is a candidate goal state.

It should be noted that this description of a goal state
and the subdivision of the problem into boolean literals do
not have to generalize to every high dimensional continuous
problem and this is why we focus only on those where the
constraints that define the goal subspace can be semantically
expressed as atomic actions. For instance, the well studied
metric simultaneous localization and mapping problem that
has millions of variables to solve for can not be expressed as
a search problem with discrete actions.

In addition to the logical state literals, each action induces
additional constraints over the space of goal configurations.
This framework has two fundamental effects. First, given that
a goal state has the desired goal literals and has a feasible
configuration for the constraints it contains, we are guaranteed
to find a solution to the search problem if a feasible solution
to the original continuous problem exists and the feasibility
test is sound. This is completeness.

Secondly, each time an action is added, the planner checks
for the feasible goal subspace. If the last action introduces

3



constraints that are in violation of the domain constraints,
e.g., requires a jump of 10 meters, then the outcome state
and all its future children can be discarded. In other words,
each action partitions the space of configurations. A subspace
without feasible results is discarded. The recursive partitioning
of the space continues until the goal literals are satisfied at a
state and the final space defined by the state constraints is not
empty. Any value from that final space is a goal configuration
and the feasibility test would return one if it exists.

B. Search in Constraint Space

Having established that the desired goal configuration is
searched for in the constraint space by adding actions which
induce new constraints to the system, we discuss the search
methodology. In this work, we use the backtracking forward
planner with uninformed heuristics to order future actions.

Remember that the goal is to search for a node that satisfies
the goal literals and its constraints, starting from some initial
node n0. The backtracking forward planner is essentially a
depth first search algorithm where at a node ni with the
neighbors (children) {ni1, ...nim}, the search commits to
going to each child nij (e.g., depth first) and backtracks if
none of the paths following nij lead to some goal state ng .
The term ‘forward’ planner defines that a child nj of a node ni

can be generated from ni by applying some action ak (i.e. nj

= Apply(ni, ak). To choose which child nodes to inspect first,
we use a predefined action ordering, an uninformed heuristic
since it does not use any node information.

A note on backward planners and informed heuristic meth-
ods: The ‘backward’ planner defines a node nj to be child
of ni if an action ak can be taken to generate ni (i.e. ni =
Apply(nk, ak)) - an exact opposite of the ‘forward’ planner.
When action definitions only have effects on state literals,
this method is preferred if the goal state has less neighbors.
However, in our framework, it would invalidate the partitioning
approach. Imagine the counterbalancing in Figure 1. It can not
be generated because in the predecessor state, before the coun-
terbalance, the state would be unbalanced and discarded. The
child would never be generated. We have experimented with
extensions of backward planners to accommodate searches in
the constraint space but have decided to present our approach
with a simple forward planner. Similarly, the application of
informed heuristics for the ADFS domain is future work.

C. Example Application

To demonstrate the application of our approach, we provide a
simple example in Figure 3 where the goal of the robotic agent
is to design a structure to climb the object G using a subset
of the six available objects (gray) on the left. Note that the
maximum height the robot can climb up to, yMax, is 2 units,
the height of object o3 and the maximum distance, xMax, it
can skip in climbing is 0.5 units.

In the figure below, we show our final output (blue) where
the object o4 is placed above o5 right after o6. Note that the
red boxes represent the abstract design that only considers the
state literals, but not the object sizes or masses. The final plan

Fig. 3. The final result of a simple problem of obstacle climbing. The yellow
‘right-turn’s represent the actions ’WalkFromGround’ and ’WalkAbove’, and
the ‘u-turn’s represent the ‘Jump’ actions.

is: {PutGround(o6), WalkFromGround(o6), PutGround(o5),
PutOn(o4,o5), Jump(o6,o5), WalkAbove(o5, o4), Jump(o4,G)}.

We search for a path from the initial state s0 ={At(ground),
Used(G), Unused(oi), CanGo(oi) |1 ≤ i ≤ 6} to a goal
state sg such that the literal At(G) ∈ sg . Note that the literal
CanGo(oi) is removed once the robot jumps to an object oi and
used to avoid cycles in the search. Figure 4 presents the search
tree of the backtracking forward planner and the outcome plan
in the form of green directed edges. The tree has the following
abbreviations to save space: (1) an action A(x:y,z) represents
the group {A(x,z), A(x+1,z), ..., A(y,z)} leading to a set of
‘unseen’ states, (2) the dashed edges contain two actions with
the top one applied first (the middle nodes are not expanded),
and (3) the red state s35 has a tree of backtracks not shown.

Fig. 4. The planning graph for the simple example where the green arrows
represent the desired plan and the state s53 satisfies the goal requirements.

Several points need to be made about the forward planner
tree depicted above. First, note that the children of a state
are expanded bottom up. For instance, the children of the
state s23 are analyzed in the order of {s34, s33, s32} where
the last created child is analyzed first. Secondly, as a state
is generated, the feasibility test is conducted for the partition
of the configuration space it represents. If a state fails the
test, such as one of the states s24, s33 and s44, it is useless
to examine its children and thus, it is discarded. Lastly, the
set of “generic” actions are first instantiated with the possible
combinations of objects without a preference on the ordering
of the objects. Then, the instantiated actions with satisfied pre-
conditions are prioritized with the order {WalkFromGround,
Jump, WalkBelow, WalkAbove, PutOn, PutGround}.

4



Starting from the initial state s0, the planner applies two
actions, PutGround(6) and WalkFromGround(6), taking the
robot on top of object o6. Next, the planner skips the unfeasible
state s24 and places o5 on the ground, moving to state s23.
Following the action ordering, the planner goes to state s34,
prematurely jumping to o5. At this point, it can neither reach
the goal G because o5 is too low nor climb upon other objects
- thus, the backtracks in s35. However, falling into this branch
leads the planner to investigate approximately four thousand
nodes, a common problem with depth first search that can be
fixed with domain specific heuristics.

After backtracking from state s35 to state s23 and skipping
the unfeasible state s33, the planner makes the correct choice at
each level. Before jumping to o5, the robot places object o4 on
top of it (s32). This way, after the jump, the robot walks above
to object o4 (s46) and jumps to the goal object G (s53). In the
final state, the feasibility test solves for 7 equality constraints,
25 inequality constraints, and considers the mass of the robot
at 4 locations (before and after the two jumps) to guarantee
the stability of the structure as the robot traverses it.

D. Algorithm

Algorithm 1 demonstrates the complete planner for constraint
space problems where the inputs are a domain definition D,
the list of desired goal literals G and an initial state s0. In
the following, we describe the details of the algorithm. Given
that actions are parameterized by object names and represented
with strings, the instantiate function at line 1 creates the set of
all instantiated actions A(D), by replacing the object names
with the parameter names of each action. At line 2, the stack
of states to be inspected is created with the initial state.

Algorithm 1: ConstrainedForwardPlanner()
Input: domain: objects properties and generic actions;
Input: goals: list of goal literals to be fulfilled;
Input: initialState: discrete literals;
Result: configurations: a feasible value in goal subspace;
allActions←instantiate(domain);1

stateStack ←createStack(initialState);2

while stateStack not empty do3

state← stateStack.pop();4

actions←stateActions(actions);5

foreach action in the set actions do6

child←applyAction(state, action);7

confs←domain.checkFeasible(child);8

if confs = ∅ then stateStack.push(child);9

else if goals ⊂ child then return confs;10

return ∅;11

In the main loop between lines 3 to 10, at each iteration, a
new state is pulled from the stack. For each state si, the set
of available actions A(si) is determined at line 5 by checking
for the preconditions of each instantiated action: A(si) :=
{Ai ∈ A(D)|A(si).pres ⊂ si}. Once an action is chosen,
a new state sj is created from the parent si by applying the

effects of the action Ai: sj := (si \Ai.dels)∪Ai.adds. Once
the child state is retrieved, a domain specific feasibility test
is called (line 8). If the child is feasible and satisfies the goal
literals, the feasible values are returned (line 10); otherwise,
it is pushed to the stack and the loop continues (line 9).

The algorithm makes use of the action constraints in two
ways. First, it evaluates the feasibility of seemingly plausible
states. For instance, although the preconditions of the action
PutOn(o1,o2) are satisfied in a state, it is not guaranteed that
o1 can be balanced on o2 (e.g., lack of other objects to
counterbalance). Secondly, the feasibility evaluation outputs
feasible configurations that are the desired goals of the search.

Function FeasibilityTestADFS presents the feasibility test
for the ADFS domain where 5 types of constraints are
combined: simple and complex action constraints, balance,
collision and problem constraints. All the constraints are
optimized with the linear optimization toolbox named ‘glpsol’
[7]. In the following, we describe the types of constraints.

Function FeasibilityTestADFS

Input: state: discrete literals that define constraints;
Result: configurations: locations of the final design;
constraints← state.equalities ∪ state.inequalities1

foreach complexConst in the set state.complex do2

constraints.add(apply(complexConst, state));3

addBalanceConstraints(constraints);4

addCollisionConstraints(constraints);5

addProblemConstraints(constraints);6

return glpsol(constraints);7

Figure 2 contains examples of simple constraints defined
with the literals ‘Eq()’ and ‘InEq()’. A different complex class
is created to induce constraints after an object is added to the
system. For instance, the action ‘Jump(o1,o2)’ constraint has
the complex constraint leftSpace which guarantees that there
are no objects above object o2 for a horizontal distance xMin
from its left edge so that the robot has room to move. Such a
constraint involves all the objects in the environment, making
it necessary that it is considered after the action is taken.

The balance constraints for an object oi induce two inequal-
ity constraints limiting the center of mass of all the objects
above oi to stay in between the edges of oi (line 4). Let
Oi be the set of objects oj such that there exists a chain
{On(oj , x1), On(x1, x2), ..., On(xn, oi)}, let m̂i be their total
mass and let x̂i be their center of mass:

∑
oj∈Oi

mj

m̂i
∗xj . The

two inequalities are as follows: ‘xi − x̂i ≤ ±0.5wi.’
To ensure stability, the location of the robot is taken into

account in the balance constraints. We make the observation
that the torque induced by the robot is maximum when the
robot is at the edges of the block it is on - that is exactly
before and after a jump. Thus, the effect of other actions, i.e.
WalkAbove and WalkBelow, is limited by the Jump actions
and if the structure is stable when the robot jumps, then it
would be stable all through its path. Thus, to realize stability,
for each action Jump(o1,o2), we simulate torques in the

5



described balance equations at the locations x1
j = x1 +0.5w1

and x2
j = x2 − 0.5w2 with the robot mass mr.

The collision constraints (at line 5) guarantee that objects
do not overlap each other in their final position. To implement
this, the height of each object is determined using the On(x, y)
constraints and for the objects o1 and o2 that might collide,
the inequality constraint, ‘x2−x1 ≥ 0.5(w1 +w2)’, is added.

At line 6, the problem constraints are introduced to the
system of constraints. Although these constraints vary based
on the problem, for problems with an obstacle G, the location
of the obstacle has to be fixed using equality constraints. For
the fire example in Figure 1, none of the objects were allowed
to be within the region with the following set of inequality con-
straints: {xi + 0.5wi ≤ firex, yi − 0.5hi ≥ firey|∀oi ∈ O}.

V. EVALUATION AND FUTURE WORK

Figure 5 demonstrates an example where the goal is to climb a
tall obstacle. The properties of the objects in the environment,
their small sizes, push the planner to use a large number of
objects in the design. In this section, we use this figure as a
motivating example to evaluate the complexity of our proposed
algorithm and its limitations.

Fig. 5. An example of a functional structure where the goal is to climb a
tall obstacle using a large number of smaller objects.

For a problem domain with n objects and m generic actions,
the search tree at worst has mn2 instantiated actions assuming
an action affects at most two objects. For a maximum plan
length of d and a branching factor of mn2, the worst case
complexity of the depth-first search is O(mn2d). Such a
complexity is expected given the simplicity of the search
method and complexity can be improved extensively by using
informed heuristics. For the fire example with 5 objects and 6
actions, the search expands 4952 nodes and takes an average
of 12.98 seconds (10 trials) on a 4.5GHz Intel i7 processor.

In addition to the complexity of the search in terms of nodes,
the average duration of a feasibility test also plays an important
role in overall efficiency. The relaxation we have made in
allowing only linear equality and inequality constraints allows
for the use of efficient convex optimization methods. For
instance, for the final configuration of the example in Figure 5
with 15 equality and 59 inequality constraints, the feasibility

test takes 4 milliseconds. In generalizing our approach to
quadratic and general non-convex constraints, it will become
imperative to find similarly efficient feasibility methods.

Lastly, we address the issue of buildability of the designed
structures. In this work, we make the assumption that the agent
has access to the objects when it wants to place them in the
world or that once a plan is made, it can build the structures,
especially those that require counterbalancing, off site and
move them to correct positions before utilizing them. It is clear
that future work has to consider the problem of buildability to
realize the autonomous construction of automated designs.

VI. CONCLUSION

In this work, we introduce the automated design of functional
structures (ADFS) and identify the broader class of problems it
belongs to: problems with high dimensional continuous spaces
that can be partitioned into subproblems by semantically
meaningful actions. We observe that actions with discrete
propositions and continuous constraints effectively partition
the space of solutions. Thus, we reformulate the problem
where the goal is to plan in the space of constraints, adding
constraints until a desired goal subspace is shaped.

Following the presentation of a constraint space planner,
we provide a detailed formulation of the ADFS problem and
demonstrate an example application of our approach. More-
over, we prove that the constraint space planner is complete
given that the feasibility module is sound. We discuss the
computational limitations regarding the space of candidate
designs and the merits of convex constraints in efficiency.

In conclusion, we believe this work presents a principled
treatment of problems in high dimensional continuous spaces
using classical planning approaches and hope to investigate a
wider range of problems in future work, in the domains of
automated design and construction, towards full autonomy.

ACKNOWLEDGEMENTS

This work was supported by ONR Grant #N000141210143:
Autonomous Discovery of Object Properties: Robots that
Create Simple Machines.

REFERENCES

[1] B. Akgun and M. Stilman. Sampling heuristics for optimal motion
planning in high dimensions. In IROS. IEEE, 2011.

[2] M. Buss, H. Hashimoto, and J.B. Moore. Dextrous hand grasping force
optimization. Robotics and Automation, IEEE Transactions on, 1996.

[3] U. Dorndorf, E. Pesch, and T. Phan-Huy. A time-oriented branch-
and-bound algorithm for resource-constrained project scheduling with
generalised precedence constraints. Management Science, 2000.

[4] M. Kalisiak and M. van de Panne. RRT-blossom: RRT with a local
flood-fill behavior. In ICRA 2006, pages 1237–1242. IEEE, 2006.

[5] O. Khatib and J. Burdick. Optimization of dynamics in manipulator
design: The operational space formulation. IJRA, 1987.

[6] J.J. Kuffner Jr and S.M. LaValle. RRT-connect: An efficient approach
to single-query path planning. In ICRA. IEEE, 2000.

[7] A. Makhorin. Modeling language GNU Mathprog. In Structure, 2007.
[8] S.J. Russell and P. Norvig. Artificial intelligence: A Modern Approach.

Prentice Hall, 2010.
[9] M. Stilman. Task constrained motion planning in robot joint space. In

IROS. IEEE, 2007.
[10] V. Vidal and H. Geffner. Branching and pruning: An optimal temporal

pocl planner based on constraint programming. Artificial Intelligence,
2006.

6


