
Robot Path Planning Using Field Programmable Analog Arrays

Scott Koziol, Paul Hasler and Mike Stilman

Abstract— We present the successful application of recon-
figurable Analog-Very-Large-Scale-Integrated (AVLSI) circuits
to motion planning for the AmigoBot robot. Previous research
has shown that custom application-specific-integrated-circuits
(ASICs) can be used for robot path planning. However, ASICs
are typically fixed circuit designs that require long fabrication
times on the order of months. In contrast, our reconfigurable
analog circuits called Field Programmable Analog Arrays
(FPAAs) implement a variety of AVLSI circuits in minutes.
We present experimental results of online robot path planning
using FPAA circuitry, validating our assertion that FPAA-based
AVLSI design is a feasible approach to computing complete
motion plans using analog floating-gate resistive grids. We
demonstrate the integration of FPAA hardware and software
with a real robot platform and hardware in the loop simulations,
present the trajectories developed by our planner and provide
analysis of the time and space complexity of our proposed
approach. The paper concludes by formulating metrics that
identify domains where analog solutions to planning may be
faster and more efficient than traditional, digital robot planning
techniques.

I. FPAA EMBEDDED SYSTEM FOR PATH PLANNING

Path planning is a critical task for robots. Given states,

actions, an initial state, and a goal state, path planning can

be summarized with the following three tasks: First, find a

sequence of actions that take the robot from its Initial state to

its Goal state. Second, find actions that take the robot from

any state to the Goal state, and third, decide the best action

for the robot to take now in order to improve its odds of

reaching the Goal. Path planning computations are typically

executed on Digital microprocessors. This work will show

that using Analog VLSI circuits instead of Digital circuits

for path planning can potentially provide: Improved Time

and Space Complexity metrics, improved computation times,

and finally the potential for lower power processing capa-

bilities [1], [2]. Low power processing capabilities provide

a significant advantage for small ground robot applications

where the power budget for Guidance, Navigation, and

Control is limited and the battery is a significant portion

of the robot’s mass, Fig 1. Micro Aerial Vehicles (MAV) or

Autonomous Underwater Vehicles (AUV) may be potential

future applications of this planner.

Custom ASIC designs could be used for path planning,

but revisions incur a long design cycle/fabrication time.

FPAAs, however, allow the designer to reconfigure the analog

S. Koziol and P. Hasler are with the School of Electrical and Com-
puter Engineering, Georgia Institute of Technology, Atlanta, GA, USA
skoziol,phasler@ece.gatech.edu

M. Stilman is with the School of Interactive Computing, Georgia Institute
of Technology, Atlanta, GA, USA mstilman@cc.gatech.edu

The authors would like to thank Stephen Williams of Georgia Institute
of Technology for robot hardware support.

Fig. 1. This shows a goal of this research: To use reconfigurable analog
circuits called Field Programmable Analog Array Integrated Circuits (FPAA
IC) to plan a path for small robot through an environment in an effort to
conserve limited battery resources and extend operation times.

connections within the IC using software and hardware

infrastructure. This allows quick design changes and re-use

of a single IC [4]. Fig 2 shows the FPAA and programming

and control hardware infrastructure developed at Georgia

Tech [3]. This embedded system programs the desired circuit

onto an FPAA IC.

This work builds upon [5]. Two significant contributions

of this new paper are first, the FPAA planner is integrated

with a robot, and second the FPAA planner is compared to

a digital method in regards to space and time complexity. In

summary, the answer to the motivation question Why plan

using analog?: Because with a large enough grid size analog

may be faster and more efficient than traditional, digital robot

planning techniques. Also, it may provide a potential power

savings. The answer to a second motivating question Why

FPAAs?: Because reconfigurable AVLSI systems provide

circuit tunability and flexibility that custom ASICs do not

provide.

II. RELATED WORK

In 1985, Khatib [6] introduced the idea of real time robot

path planning using potential fields. One of the drawbacks to

this method is that it is not complete because local minima

in the search space may lead to solutions which do not end

in the goal. One of the earliest references to using Laplace’s

equation for path planning is [7]. This method eliminates

the local minima problem of potential fields. Harmonic

functions are solutions to Laplace’s equations. Harmonic

potential fields are explored to eliminate local minima of

potential fields, [8], [9], [10]. Tarassenko, et. al. build upon

[7] and present the idea of using AVLSI resistive grids for

Mike
Typewritten Text
In Proc. International Conferenece on Robotics and Automation (ICRA'12), May, 2012.

Mike
Typewritten Text

Mike
Typewritten Text

Mike
Typewritten Text

Fig. 2. (a) Block Diagram of the FPAA programming and control board
(b) Custom embedded system implementing the block diagram and used for
the experiments in this paper. [3]

the computation in [11]. Other research involving AVLSI or

resistive grids for planning is found in [12], [13], [14], [13],

[15], [16], and [17]

As evidenced by the above references, the idea of using

Laplace’s equation and analog circuits for path planning is

not new, but there is limited circuit measurement data in

the references, and few if any examples of integrating an

AVLSI planner with robot systems. Finally, the referenced

circuits use resistors or standard transistors to implement

the circuits. This work is new for a few reasons: First,

because it provides measured data from a fabricated AVLSI

IC that is actually integrated into a closed loop robot system.

Second, our analog circuit implementation is different from

the existing literature because it uses floating-gate transistors

which provide, among other things, a non-volatile way to

store the environment map, and third, initial calculations

comparing time and space complexities for Analog vs Digital

are presented.

III. MATHEMATICAL ANALYSIS OF ANALOG PLANNER

The Laplacian is a differential operator that provides the

partial derivatives of the gradient. In this path planning

problem, it is the second partial derivatives of the voltage

function [18]. Laplace’s equation, (1), uses the Laplace

operator on a function and sets it to zero [18]. According

to this method, the voltage at each node is the average of its

four neighbors.

∆f =
∂2f

∂x2
+

∂2f

∂y2
= 0 (1)

Fig 3 shows how an office environment is modeled using a

transistor based resistive grid. The transistors in the free path

regions were turned fully on by programming the floating

gates to conduct current, and the transistors representing

obstacles (in red) were turned off by programming the

floating-gate transistors such that they would not conduct

current. This resistive grid is then used to solve a path

planning problem. As in [11], the path from start to goal

is found by 1) placing a constant current source at the start

node 2) waiting until the resistive grid settles into a steady

state, 3) reading the node voltages 4) finding the path from

start to goal using voltage measurements from successive

nodes. The transistors used for planning in the FPAA are a

special type of transistor called floating-gate transistors. A

transistor can be operated in above threshold or subthreshold

regimes. Subthreshold operation results in much lower power

use because less current is being conducted. The current in a

pFET transistor in subthreshold operation may be described

in (2) [19].

I = I0e
Vdd(κ−1)

UT e
−κVg+Vs

UT

[

1− e
−Vsd
UT

]

(2)

Where in (2), I0 is a constant representing pre-exponential

factors, κ is a constant representing the capacitive coupling

ratio from gate to channel, and UT is the thermal voltage

[20] [19]. From (2) the pFET’s resistance is calculated in

(3).

R = 1

/

∂I

∂Vd

∣

∣

∣

∣

Vds=0

=
UT

Ioe
Vdd(κ−1)

UT e
−κVg+Vs

UT

(3)

Floating gate transistors are unique. Unlike a conventional

transistor, floating gate transistors have an isolated gate

terminal which can hold charge. This provides two important

properties: First, one does not need to actively maintain

a voltage on each gate terminal of the grid when using

the circuit. Second, once programmed, the gate is set and

the circuit will hold its configuration even if the power is

removed from the IC. More details about the FPAA planner

can be found in [5].

IV. INTEGRATION OF FPAA AND ROBOT

We are using an AmigoBot robot to demonstrate the analog

planning system, Fig 4(a). The FPAA and AmigoBot robot

are integrated such that the FPAA acts as a “planning co-

processor” for the robot. A block diagram showing how the

analog resistive grid’s planner fits into the larger robot system

is found in Fig 5(a). The Executor’s function is to act as

an interface between the FPAA and the low level digital

controller. An example software flow is found in Fig 5(b).

This simple, proof of concept flow assumes four things: a

known map, a static environment, the robot’s starting location

is known, and the goal location is known. More complex

flows could move the current source to follow the robot in the

grid [11] and can also incorporate re-planning. The task of

the Navigation block in Fig 5(a) is to convert high level plans

such as “Move from the window to the desk at grid (4,3)”

in Fig 3(a) to low level commands. A position-stabilizing

controller adjusts the robot’s forward and angular velocity

and is used to drive the robot to points in the grid [21]. The

Fig. 3. Converting the office grid world into an AVLSI representation a) Office with walls as obstacles b) Simplified grid representation of office c)
Floating-gate pFET transistors used to implement the obstacles.

(a) Mobile Robots AmigoBot [22] (b) Experimental setup (c) Measured Results

Fig. 4. Our experimental environment showing (a) the robot with coordinate axes, (b-c) the implementation of an FPAA generated plan.

control equations are based on feedback linearization. The

kinematic equations of motion are shown in (4).

ẋ

ẏ

θ̇

λ̇

=

0
0
0

−c (λ− ε)

+

cos (θ) 0
sin (θ) 0

0 1
0 0

[

v

ω

]

(4)

This uses a coordinate transformation where a λ offset is

chosen from the center of rotation (see axis overlaid over Fig

4(a)). An overhead camera is used for localization. Image

processing routines segment three dots on the back of the

robot and these are used to locate the robot in (x,y, θ) image

space [23].

For this proof of concept system, two programming envi-

ronments were integrated: the Matlab of the FPAA, and the

C++ code for Player. An extensive body of Matlab code has

been developed by the Integrated Computational Electronics

(ICE) Lab at Georgia Tech to program and communicate

with the FPAA board. Open source Player software, [24],

is used for interfacing with the FPAA (via Matlab) and for

controlling the AmigoBot robot. The FPAA Matlab code is

called by Player using Matlab engine functions [25].

V. EXPERIMENTAL RESULTS

This section presents our initial results of integrating a robot

with an AVLSI co-processor. The experimental setup is

shown in Fig 4(b). The robot is shown in the background,

the FPAA is shown on the left corner of the desk, and the

overhead camera is above (not shown). All are tethered to the

laptop running Player via USB cables. Fig 4(c) shows our

initial experimental results from a robot in a four by four grid

world. The AVLSI FPAA hardware has been integrated into

Player as a co-planner for the AmigoBot robot. This is an

image taken from the overhead camera used for localization.

The results are for an experiment in a 4x4 office grid world.

The cubicle partitions are marked in black tape on the floor.

The overlaid red dots are the recorded trajectory of the robot

moving from node (1,1) to node (4,3) The overlaid blue

circles mark the grid nodes. At each node traversed by the

robot, the FPAA was consulted for the next node.

Although this is a trivial planning problem, it demonstrates

two major goals: First, our system can make complete plans

using floating-gate resistive grids (based on our limited

experiments), Second, the supporting FPAA hardware and

software are at a level of sophistication where they can

be reliably integrated into robot platforms. This system has

three modes of operation. These three methods provide useful

options when debugging various parts of the system. A brief

discussion of each of the modes is now presented.

Real Robot, Real FPAA Results: The FPAA and an

AmigoBot robot were integrated together and localization

was performed using an overhead camera (640x480 pixel

resolution). The robot successfully navigated its path on the

floor as directed by the FPAA. Fig 4(c) shows in red the

path the robot made from its start to its goal. At each node

(represented by a blue circle), Player queried the FPAA co-

Fig. 5. a) High level control system block diagram b) Software flow of
the Executer designed to integrate the analog planner and the robot. .

processor to help decide whether to go straight, or turn left

or right at each node in order to reach the goal.

Real FPAA, Simulated Robot Results: This is a Hard-

ware in the Loop (HWIL) environment where the actual

FPAA hardware is being called by Player and is interacting

with a virtual robot in a three dimensional robot simulator

with dynamics. This environment is called Gazebo and

interacts with Player using the same control code. Ideally,

one can take the same Player control code to control a virtual

robot or the real thing. Fig 7 shows an image from a Gazebo

simulation. Virtually identical software is used for this HWIL

simulation as in the section regarding Real Robot, Real FPAA

Results.

Simulated FPAA, Simulated Results: Finally, it is pos-

sible to simulate the FPAA results by using Matlab to solve

for node voltage values using, for example, Kirchoff’s laws.

VI. ANALYSIS

This path planning problem can be formulated as a tree

search problem. These problems are typically evaluated with

four metrics: Completeness, Optimality, Time Complexity,

and Space Complexity [26]. Time and Space Complexity are

addressed further in the following sections. Time complexity

is typically measured by the number of nodes generated [26].

Space complexity is measured in terms of the maximum

number of nodes stored in memory [26].

A. Time Complexity

Time complexity is not as simple as number of nodes

generated with the FPAA. There are three items to consider

when calculating the total time cost of the FPAA planner:

FPAA grid programming time, solution computation time,

Fig. 7. This is an image of a simulated office environment used in a FPAA
Hardware in the Loop (HWIL) test.

Type 1 Type 2 Type 3

Measured Erase and Initialize grid (sec) 35 35 35

Measured Program time per path (sec) 0 0.0486 4.4332

Expected Program times (sec) [4] 0 0.001 .050

TABLE I

GRID PROGRAMMING TIMES ACCORDING TO PATH TYPE

and time to read the solution from the grid. Each of these

are addressed below.

1) FPAA Programming Time Measurements: Program-

ming a grid map onto the FPAA is done in two main phases:

First, the FPAA is erased and prepared for programming,

second, the new map is programmed onto the FPAA. With

our current software, it takes approximately 35 seconds to

erase and prepare the FPAA for programming. This amount

of time is independent of the size of map that will be

programmed. The time needed to program the map is a

function of two parameters: size of map, and type of paths

which connect the nodes on the map. There are three types

of paths that we will consider: Type 1: impassable paths,

Type 2: completely passable paths, and Type 3: a path which

is passable, but with some degree of difficulty. This may be

due to terrain such as sand, an incline, etc. The programming

times for each of these paths is summarized in Table I. As

the state of the art in floating-gate programming advances,

these times are expected to decrease.

In the 4x4 grid example, 38 floating-gate switches were

used in the circuit. Of these, 22 switches were overhead.

That is, they were needed to program the grid, but were

not path elements. This overhead number changes according

to grid size. The switches were generated automatically

using GRASPER software [4]. In this example, this overhead

represents about 58% of the total number of switches. Due

to obstacles, the number of free paths was only about 67%
of the total paths possible in a 4x4 grid. If we consider N

as the number of nodes on the side of an NxN square grid,

the number of possible paths is O(2N2).

2) Solution computation time: The computation time for

the FPAA is based on the time it takes for all of the grid’s

node voltages to settle to steady state in response to a current

step input. For the 4x4 grid example, the computation time of

this grid based FPAA planner is approximately 4.5ms. Fig 9

shows the transient response of each of the sixteen nodes in

Fig. 6. a) Measured FPAA hardware results for a 4x4 grid like the configuration of the robot start, goal, and obstacles in Fig 3(c). b) A table of the
measured voltages with path identified by the pink squares. c) Measured node voltage settling times of the example office 4x4 resistor grid as a function
of grid location.

the grid. The limiting factor in this case is Node 15 which

took about 4.5ms to settle. Fig 6(a-b) shows node voltage

measurements from a 4x4 grid world, (c) shows the node

settling times for each of the nodes. A step input voltage was

placed on the pFETs gate at node (1, 1) and this implemented

a step input current to represent the robot’s location at this

node. A current sink was implemented at node (4, 3) to

represent the goal. The last node to reach steady state took

4.5ms.

3) Solution access time: In the FPAA, once the nodes

have settled, the solution is found by reading d nodes,

where d is the depth of the shallowest goal node. We

could say then, that the FPAA has Time complexity of

O(d). For comparison, Breadth-First Search (BFS) has Time

complexity of O
(

bd+1
)

, where the branching factor b =

4, and d is the depth of the shallowest solution. Fig 8(a)

compares Analog to Digital Time Complexity as a function

of shallowest solution.

B. Space Complexity

To calculate a final path solution the FPAA planning system

needs to maintain an adjacency list. This lists, for each

node, all nodes that are one step away through Type 2 or

Type 3 paths. This list can have the form [source node ,

list of adjacent nodes]. For example, in the 4x4 grid of

Fig 3, the robot can reach nodes (2,2), and (3,1) from

node (2,1). The corresponding adjacency list would be [(2,1)

(2,2) (2,1)]. This information is contained in MATLAB and

combined with the node voltages read from the FPAA to

choose a path. Assuming no obstacles for maximum space

complexity, the worst case space complexity of the FPAA is

O (4N (N − 1) + 1), where N is the number of nodes on a

side of a square map, i.e. NxN map. This is calculated using

(5) where Nx terms are numbers i.e. Nmiddle−nodes is the

number of middle nodes, and A are numbers of adjacencies.

BFS worst case Space Complexity is O
(

bd+1
)

, where b =

4 and d is the depth of the DEEPEST solution.

Space complexityFPAA = (Ncorners ∗Acorner)

+

(

Nnon−corner−nodes−on−grid−edge−side

∗Anon−corner−nodes−on−grid−edge−side ∗ 4

)

+ (Nmiddle nodes ∗Amiddle nodes) + 1
(5)

Fig. 9. Measured transient responses for node voltages.

Criterion FPAA Breadth First

Complete? Yes (based on limited experiment) Yes

Time O(d) O
(

bd+1
)

Space O (4N (N − 1) + 1) O
(

bd+1
)

TABLE II

COMPARING FPAA TO BFS

Table II summarizes the Time and Space complexity com-

parisons between the FPAA and Breadth-first-search (BFS)

[26].

C. Calculation time estimate

Ideally, one would like to compare the actual solution times

of the digital and analog solutions and not just operation

numbers like Time complexity. As an estimate, assume that

the BFS algorithm is being executed on an a processor such

as the ATMEL ARM7TDMI RISC processor operating at

55MHz max clock speed. Further assume that the solution

is at the deepest solution of the grid. If one multiplies

the BFS Time Complexity number by the inverse of the

ARM7 clock then we can have a crude estimate of the

digital computation time. To estimate the computation time

of the FPAA, we extract a curve from the diagonal delay

times of Fig 6(c). Since BFS is in terms of b and d, and

the FPAA settling time estimate is in terms of N, we use

N = (d/2) + 1 as the transformation. A comparison plot is

shown in Fig 8(c). Estimate of BFS Computation Time for 55

MHz processor : O
(

bd+1
)

∗

(

1

55Mhz

)

where b = 4; Estimated

Fig. 8. (a) Comparing the Time complexity of the FPAA to BFS (b) Comparing worst case Space complexities of the FPAA to BFS (c) Comparing
Computation Time of the FPAA to an estimate for BFS

FPAA Computation Time is based on extrapolation of the

diagonals of the 4x4 delay measurement data in Fig 6(c).

Based on this graph, the prediction is that an FPAA solution

may be faster than digital for solution depths greater than

8. This plot estimates that the FPAA will be quicker at

solving plans where the solution depth is greater than 8. This

corresponds to the deepest solution of a 5x5 grid.

VII. CONCLUSION

Fig 8(a) and (b) have shown that the Time Complexity

and Space Complexity of the FPAA is orders of magnitude

lower than that of BFS. Fig 8(c) also describes the solution

depth at which FPAAs may find a solution quicker than

BFS. Finally, the FPAA embedded planning system was

successfully integrated with a real robot.

REFERENCES

[1] R. Sarpeshkar, “Analog versus digital: extrapolating from electronics
to neurobiology,” Neural Computation, vol. 10, no. 7, pp. 1601–1638,
1998.

[2] C. M. Twigg, “Floating gate based large-scale field-programmable
analog arrays for analog signal processing,” Ph.D. dissertation,
Georgia Institute of Technology, Atlanta, 2006. [Online]. Available:
http://hdl.handle.net/1853/11601

[3] S. Koziol, C. Schlottmann, A. Basu, S. Brink, C. Petre, B. Degnan,
S. Ramakrishnan, P. Hasler, and A. Balavoine, “Hardware and software
infrastructure for a family of floating-gate based fpaas,” IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS) 2010, May 2010.

[4] A. Basu, S. Brink, C. Schlottmann, S. Ramakrishnan, C. Petre,
S. Koziol, F. Baskaya, C. Twigg, and P. Hasler, “A floating-gate-based
field-programmable analog array,” Solid-State Circuits, IEEE Journal

of, vol. 45, no. 9, pp. 1781 –1794, 2010.
[5] S. Koziol and P. Hasler, “Reconfigurable analog VLSI circuits for

robot path planning,” in Adaptive Hardware and Systems (AHS), 2011

NASA/ESA Conference on, june 2011, pp. 36 –43.
[6] O. Khatib, “Real-time obstacle avoidance for manipulators and mo-

bile robots,” in Robotics and Automation. Proceedings. 1985 IEEE

International Conference on, vol. 2, Mar. 1985, pp. 500 – 505.
[7] C. Connolly, J. Burns, and R. Weiss, “Path planning using laplace’s

equation,” in Robotics and Automation, 1990. Proceedings., 1990

IEEE International Conference on, May 1990, pp. 2102 –2106 vol.3.
[8] J.-O. Kim and P. Khosla, “Real-time obstacle avoidance using har-

monic potential functions,” in Robotics and Automation, 1991. Pro-

ceedings., 1991 IEEE International Conference on, Apr. 1991, pp. 790
–796 vol.1.

[9] ——, “Real-time obstacle avoidance using harmonic potential func-
tions,” Robotics and Automation, IEEE Transactions on, vol. 8, no. 3,
pp. 338 –349, June 1992.

[10] C. Connolly and R. Grupen, “The applications of harmonic functions
to robotics,” Journal of Robotic Systems, vol. 10, no. 7, pp. 931 –946,
June 1993.

[11] L. Tarassenko and A. Blake, “Analogue computation of collision-free
paths,” in Robotics and Automation, 1991. Proceedings., 1991 IEEE

International Conference on, Apr 1991, pp. 540–545 vol.1.

[12] M. Stan and W. Burleson, “Analog VLSI for robot path planning,” in
Signals, Systems and Computers, 1992. 1992 Conference Record of

The Twenty-Sixth Asilomar Conference on, Oct. 1992, pp. 915 –919
vol.2.

[13] G. Marshall and L. Tarassenko, “Robot path planning using VLSI re-
sistive grids,” in Artificial Neural Networks, 1993., Third International

Conference on, May 1993, pp. 163 –167.

[14] M. Stan, W. Burleson, C. Connolly, and R. Grupen, “Analog VLSI for
robot path planning,” The Journal of VLSI Signal Processing, vol. 8,
no. 1, pp. 61–73, 1994.

[15] G. Marshall and L. Tarassenko, “Robot path planning using VLSI
resistive grids,” Vision, Image and Signal Processing, IEE Proceedings

-, vol. 141, no. 4, pp. 267 –272, Aug 1994.

[16] K. Althofer, D. Fraser, and G. Bugmann, “Rapid path planning for
robotic manipulators using an emulated resistive grid,” Electronics

Letters, vol. 31, no. 22, pp. 1960 –1961, Oct. 1995.

[17] M. Kanaya, G.-X. Cheng, K. Watanabe, and M. Tanaka, “Shortest
path searching for robot walking using an analog resistive network,”
in Circuits and Systems, 1994. ISCAS ’94., 1994 IEEE International

Symposium on, vol. 6, may-2 jun 1994, pp. 311 –314 vol.6.

[18] D. Powers, Boundary value problems: and partial differential equa-

tions. Academic Press, 2010.

[19] C. Mead, “Analog VLSI and neural system,” Ed. Addison Wesley. USA,
1989.

[20] S. Liu, Analog VLSI: circuits and principles. The MIT press, 2002.

[21] R. Olfati-Saber, “Near-Identity Diffeomorphisms and Exponential
ε-Tracking and ε-Stabilization of First-Order Non-
holonomic SE (2) Vehicles,” in Proceedings of the American Control

Conference. Citeseer, 2002.

[22] M. Robots. (2011, Feb.) Mobile Robots Website. [Online]. Available:
www.mobilerobots.com

[23] R. Borras. (2005, May) Blob Detection. . [Online]. Available:
www.ros.org/doc/api/cvblobslib/html/classCBlob.html

[24] B. Gerkey, R. Vaughan, K. Stoy, A. Howard, G. Sukhatme, and
M. Mataric, “Most valuable player: a robot device server for dis-
tributed control,” in Intelligent Robots and Systems, 2001. Proceedings.

2001 IEEE/RSJ International Conference on, 2001.

[25] S. Koziol, D. Lenz, S. Hilsenbeck, S. Chopra, P. Hasler, and
A. Howard, “Using floating-gate based programmable analog arrays
for real-time control of a game-playing robot,” in Systems, Man,

and Cybernetics (SMC), 2011 IEEE International Conference on, oct.
2011, pp. 3566 –3571.

[26] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 2003.

