
Georgia Institute of Technology, Technical Report, GT-GOLEM-2011-004, 2011

Turning Paths Into Trajectories Using Parabolic Blends

Tobias Kunz and Mike Stilman

Abstract— We present an approach for converting a path
of multiple continuous linear segments into a trajectory that
satisfies velocity and acceleration constraints and closely follows
the given path without coming to a complete stop at every
waypoint. Our method applies parabolic blends around way-
points to improve speed. In contrast to established methods that
smooth trajectories with parabolic blends, our method does not
require the timing of waypoints or durations of blend phases.
This makes our approach particularly useful for robots that
must follow kinematic paths that are not explicitly parametrized
by time. Our method chooses timing automatically to achieve
high performance while satisfying the velocity and acceleration
constraints of a given robot.

I. INTRODUCTION

The output of typical robot motion planners is a path in
configuration space consisting of continuous straight line
segments between waypoints. Such a path is not differen-
tiable at the waypoints. Since the robot has nonzero mass
and the forces that can be applied are finite, the robot
cannot instantaneously change its direction of motion. In
order to follow the path precisely, it would have to come
to a complete stop at each of the waypoints leading to slow
execution. One standard method of avoiding a complete stop
at the waypoints is that of adding parabolic blends. However,
the treatment of parabolic blends in existing literature such as
[1] and [2] is not directly applicable to kinematic paths. [1]
and [2] assume that we know the time durations of the linear
and blend phases. In contrast to trajectories, paths do not
explicitly refer to time. An automated solution to finding the
durations that satisfy the velocity and acceleration constraints
of a given robot is crucial for turning paths into trajectories.

We present an algorithm that automatically chooses dura-
tions to generate a smooth, valid trajectory. Our algorithm
attempts to generate the fastest trajectory possible given the
constraints on joint accelerations and velocities. But in order
for the trajectory to be valid, the algorithm might in certain
cases resort to highly suboptimal trajectories with respect to
time.

In Section II we define the problem of turning paths
into trajectories more formally. Section III presents linear
polynomials with parabolic blends as described in [1] and
[2]. We cover these topics more thoroughly with greater
attention to detail. In Section IV we introduce a new method
to automatically choose the durations of the linear and blend
phases such that velocity and acceleration constraints are
met. Finally, Section V discusses the proposed method, its
strengths and limitations.

The authors are with the Center for Robotics and Intelligent Machines
(RIM) at the Georgia Institute of Technology, Atlanta 30332, USA. Email:
tobias@gatech.edu, mstilman@cc.gatech.edu

t

q(t)

q1

q2

q3

q4

0 T1 T2 T3 T4

∆T1 ∆T2

tb1 tl1 tb2

slope = v3

Fig. 1. One-dimensional example of a linear function with parabolic blends.
The first four of at least five waypoints are shown.

II. PROBLEM STATEMENT

We are given a path in configuration space C as a list of
waypoints q1, . . . , qn with qi ∈ C. The path consists of
straight line segments connecting these waypoints. We are
looking for a fast trajectory that follows this path closely and
satisfies velocity and acceleration constraints. A trajectory is
defined by a duration tf and a function q : [0, tf] → C,
which returns the robot’s configuration at any continuous
point in time. We are looking for a trajectory that satisfies
the following constraints:

1) It must start and end at the first and last waypoint
respectively with zero velocity, q(0) = w1, q(tf) = wn

and q̇(0) = q̇(tf) = 0.
2) The trajectory must satisfy velocity and acceleration

constraints ∀t : |q̇(t)| ≤ vmax ∧ |q̈(t)| ≤ amax

We do not formally define the requirement that the trajectory
stay close to the original path. We only guarantee to move
along each of the straight line segments of the path once and
in the correct order. In-between following parts of the straight
line segments, the trajectory deviates from the original path.

III. LINEAR POLYNOMIALS WITH PARABOLIC BLENDS

This section explains the generation of trajectories that
consist of two alternating phases, a linear phase and a
parabolic blend phase. Following [1] and [2] we present a
detailed method for creating such a trajectory from waypoint
locations and timing information. Note that during the linear

1

phase acceleration is zero, velocity is constant and position is
linear in time. During the parabolic blend phase acceleration
is constant, velocity is linear and position is quadratic, and
thus parabolic, in time. Furthermore, during the parabolic
blend phase, the trajectory follows a parabola in configura-
tion space.

For the moment, we assume that the timing of the
waypoints is known. Hence, for each pair of neighboring
waypoints qi and qi+1 we are given a time ∆Ti, that it takes
to move in between the two. We also assume that we are
given the duration tbi of the blend phase at waypoint i. If
we move on a straight line at constant velocity in-between
waypoints then the velocity between waypoint i and i+ 1 is
given by Eq. 1.

vi =
qi+1 − qi

∆Ti
(1)

Alternatively, we could have assumed that we are given
velocities and calculated the timing.

Moving from one waypoint to the next at constant ve-
locity, leads to discontinuous velocities at the waypoints. A
nondifferentiable trajectory that moves from one waypoint to
the next at constant velocity is given by Eq. 2.

ql(t) = Ti + vi(t− Ti) if Ti ≤ t ≤ Ti+1 i ∈ [1, ..., n−1]
(2)

In order to create a continuous trajectory, we insert blend
phases at the waypoints. The overall timing of the trajectory
is not affected. The blend phase replaces part of neighboring
straight line segments with a parabola that is followed at
a constant acceleration. Around waypoint i, acceleration is
given by Eq. 3

ai =
vi − vi−1

tbi
(3)

The blend phase is centered around the waypoint with respect
to time. In other words, it overlaps with both neighboring
linear phases for the same amount of time. In order for
the trajectory to be valid, two blend phases cannot overlap
with each other. Thus, the timing of the waypoints and the
durations of the blend phases need to be given such that

tbi + tbi+1 ≤ 2∆Ti. (4)

So far, we have defined the acceleration during the blend
phase such that we move from velocity vi−1 to vi in the given
blend time tbi . We must also make sure that replacing part of
the straight line segments with parabolic blends results in a
continuous trajectory such that at the start and end time of
the blend the robot is at the same configuration it would be
following the straight-line trajectory ql(t). This condition is
satisfied as shown in Lemma 1.

Lemma 1: Let Tli be the time at which waypoint, i, is
reached when following ql(t). If we start the blend around
waypoint i at time Tli − tbi

2 , configuration ql(Tli − tbi
2) and

velocity q̇l(Tli − tbi
2), and apply constant acceleration ai

during the blend, then at the end of the blend phase at time
Tli +

tbi
2 the robot is at configuration ql(Tli +

tbi
2).

Proof: The configuration of the robot during a parabolic
blend at time t after the start of the blend is given by

b(t) = b0 + ḃ0t +
1

2
at2, (5)

where b0 is the configuration at which the blend is started,
ḃ0 is the velocity at which the blend is started and a is the
constant acceleration during the blend. For a blend around
waypoint i, these quantities are given as

b0 = ql(Tli −
tbi
2

) = qi − vi−1
tbi
2
, (6)

ḃ0 = q̇l(Tli −
tbi
2

) = vi−1. (7)

a = ai (8)

Using these quantities we show that b(tbi) = ql(Ti +
tbi
2).

b(tbi) = b0 + ḃ0t
b
i +

1

2
a(tbi)

2 (9)

=

(
qi − vi−1

tbi
2

)
+ vi−1t

b
i +

1

2
ai(t

b
i)

2 (10)

= qi + vi−1
tbi
2

+
1

2
ai(t

b
i)

2 (11)

= qi + vi−1
tbi
2

+
1

2

vi − vi−1

tbi
(tbi)

2 (12)

= qi + vi
tbi
2

(13)

= ql(Ti +
tbi
2

) (14)

Since the blend phases replace part of the linear phases,
the parts of the linear phases that actually gets executed
before and after waypoint i are shorter than ∆Ti−1, ∆Ti

respectively. During the linear phase that is not overlapped
by some blend we move along a part of the line segment
connecting waypoints qi and qi+1 at velocity vi. Between
waypoints i and i + 1 the trajectory starts to follow the
straight line at time Ti +

tbi
2 and stops at Ti+1 −

tbi+1

2 . Thus,
the duration of the actually executed linear phase between
qi and qi+1 is given by Eq. 15.

tli = ∆Ti −
tbi
2
−

tbi+1

2
(15)

Special care needs to be taken with the first and last way-
points. The blend phases at the first and last waypoints only
have one neighboring linear phase. Because we start and end
at rest, we can pretend that there is a linear segment before
the first and after the last waypoint with zero velocity and
undetermined duration. We then treat the first and last blend
phase like all the others. Remember that the blend phase is
centered in time around the waypoint. As the first and last
blend phase need to be part of the trajectory completely, the
trajectory starts tb0

2 before the first waypoint and ends tbn
2 after

the last waypoint. The time of a waypoint i is redefined as

follows:

Ti =
tb1
2

+

i−1∑
j=1

∆Tj (16)

The total duration of the trajectory is

tf =
tb1
2

+

n−1∑
i=1

∆Ti +
tbn
2
. (17)

The resulting trajectory is given by q : [0, tf]→ C with

q(t) =

qi + vi−1(t−Ti) + 1

2ai(t−Ti+
tbi
2)2

if Ti− tbi
2 ≤ t ≤ Ti+

tbi
2 i ∈ {1, ..., n}

qi + vi(t−Ti)

if Ti+
tbi
2 ≤ t ≤ Ti+1−

tbi+1

2 i ∈ {1, ..., n−1}
(18)

where v0 = vn+1 = 0. The first line represents blend phases
and the second line represents linear phases. We can also
explicitly calculate the time derivatives of the trajectory:

q̇(t) =

vi−1 + ai(t− Ti +

tbi
2)

if Ti− tbi
2 ≤ t ≤ Ti+

tbi
2 i ∈ {1, ..., n}

vi

if Ti+
tbi
2 ≤ t ≤ Ti+1−

tbi+1

2 i ∈ {1, ..., n−1}
(19)

q̈(t) =

ai

if Ti− tbi
2 ≤ t ≤ Ti+

tbi
2 i ∈ {1, ..., n}

0

if Ti+
tbi
2 ≤ t ≤ Ti+1−

tbi+1

2 i ∈ {1, ..., n−1}
(20)

IV. TURNING PATHS INTO TRAJECTORIES

Section III applied [1] and [2] to formulate trajectories
that could be used to turn a path consisting of linear
path segments into a smooth trajectory satisfying velocity
and acceleration constraints. It assumed that we know the
timing of the waypoints and the lengths of the blend phases.
However, this information is not typically given by a path.
Thus, we have to choose the timing of waypoints and the
duration of the blend phases that satisfy the velocity and
acceleration constraints of the robot. In this section we
provide an automated solution to the complete problem.

We present an iterative approach to choose the timings of
the waypoints and the duration of the blend phases. First, we
choose the timing of the waypoints such that the velocities
are maximized. The vector of all joint velocities during a
linear segment is maximized if at least one joint is moving
at its maximum velocity.

∆Ti = max
j

|qi+1[j]− qi[j]|
vmax[j]

(21)

qi[j] denotes the jth component of vector qi.

The durations of the blend phases are chosen such that the
accelerations are maximized.

tbi = max
j

|vi[j]− vi−1[j]|
amax[j]

(22)

Eq. 4 must be satisfied for the trajectory to be valid.
Eq. 4 makes sure that there is no overlap between two
blend phases. If two blend phases overlap, the resulting
trajectory would not be differentiable and might not even be
continuous. In the rest of this section we describe how we
handle overlapping blend phases in order to ensure a valid
trajectory.

If the blend phase around a single waypoint i overlaps
with more than half of one of the neighboring linear phases
and overlaps with the other blend phase neighboring that
linear phase, then we are reducing the velocity of the two
neighboring linear phases by the same factor 0 < fi < 1
such that the blend phase overlaps with at most half of each
of the two neighboring linear phases.

fi =

√
min {∆Ti−1,∆Ti}

tbi
(23)

We are multiplying the velocity of the linear phase by the
reciprocal of the factor the blend phase is overlapping too
much. The square root is applied because linear velocities
affect the overlap quadratically. Multiplying the neighboring
velocities by some factor fi reduces the blend duration
by the same factor fi. It also increases the duration of
the neighboring linear phases by factor 1

fi
. Both lead to a

reduced overlap. The following lemma and proof show the
correctness of Eq. 23 more formally.

Lemma 2: If the velocities vi−1 and vi of the two neigh-
boring linear phases of waypoint i are multiplied by factor
fi defined by Eq. 23 and the blend duration tbi is updated
according to Eq. 22 using the new velocities, then the blend
phase around waypoint i overlaps with exactly half of at least
one of the two neighboring linear segments and overlaps with
less than half of the other neighboring linear segment. More
formally, if

vi−1,new = fivi−1 ∧ (24)
vi,new = fivi ∧ (25)

tbi,new = max
j

|vi,new[j]− vi−1,new[j]|
amax[j]

(26)

then ti,new = min {∆Ti,new,∆Ti−1,new} (27)

Proof: From Eq. 1, 24 and 25 follows

∆Ti−1,new =
1

fi
∆Ti−1 (28)

∆Ti,new =
1

fi
∆Ti (29)

The following equations prove Eq. 27

tbi,new = max
j

|vi,new[j]− vi−1,new[j]|
amax[j]

(30)

= max
j

|fivi[j]− fivi−1[j]|
amax[j]

(31)

= fi max
j

|vi[j]− vi−1[j]|
amax[j]

(32)

= fit
b
i (33)

=

√
min {∆Ti−1,∆Ti}

tbi
tbi (34)

=
√

min {∆Ti−1,∆Ti} tbi (35)

=

√
tbi

min {∆Ti−1,∆Ti}
min {∆Ti−1,∆Ti} (36)

=
1

fi
min {∆Ti−1,∆Ti} (37)

= min

{
1

fi
∆Ti−1,

1

fi
∆Ti

}
(38)

= min {∆Ti−1,new,∆Ti,new} (39)

So far we have only considered a single blend phase and
its two neighboring linear phases. But we have to do the
described slow-down procedure for all blend phases that are
overlapping too much. A linear phase might have both of
its neighboring blend phases overlap more than half. In this
case the linear phase gets ascribed two slow-down factors,
fi and fi+1. Now we have a conflict, because only for the
specific slow-down factor fi we can guarantee that the blend
phase i is not going to overlap with more than half of the
linear phase after the adjustment.

We are solving this conflict by applying the minimum
of the two slow-down factors min{fi, fi+1}. Note that this
solution does not guarantee that the resulting blend phases
are free of overlaps with each other. For one of the two
neighboring blend phases the velocity of the linear phase
gets reduced more than what was calculated to guarantee an
overlap with less than half of the linear phase. The reason
why this might lead to an invalid overlap is because one of
the neighboring linear phases of the blend is slowed down
unilaterally without slowing down the other neighboring
linear phase to the same extent.

Although it is possible for this arbitration method to
produce invalid overlaps, experimentally we found this un-
likely. This is because we only reduce velocities. Reducing
velocities always leads to a longer linear phase which makes
it more likely for two blend phases not to overlap. If after
the slow-down two blend phases are still overlapping, we
repeat the slow-down procedure until no more blend phases
overlap with each other. This reduces the optimality of the
trajectory, but guarantees termination with a valid trajectory
without overlapping blend phases.

V. ANALYSIS

In this paper we presented a method for generating fast,
valid trajectories that closely follow a path while satisfy-
ing velocity and acceleration constraints of robot joints.
Experimentally, we have found this method to work well
on a number of real and simulated test cases. At this
time, we do not guarantee that the resulting trajectory is
optimal. Furthermore, we do not take obstacles into account.
Thus, because the generated trajectories deviate from the
paths arbitrarily far, a valid trajectory may still collide with
obstacles. However, since the trajectory is built largely from
linear segments, it is likely to stay close to the path, and
unlikely to hit an obstacle if the original path has sufficient
obstacle clearance.

VI. ACKNOWLEDGEMENTS

This work is supported by Toyota Motor Engineering &
Manufacturing North America (TEMA). We appreciate the
great contribution to our robotics research and education.

REFERENCES

[1] John J. Craig. Introduction to Robotics: Mechanics and Control (3rd
Edition). Prentice Hall, 3 edition, August 2004.

[2] B. Siciliano, L. Sciavicco, and L. Villani. Robotics: modelling, planning
and control. Advanced textbooks in control and signal processing.
Springer, 2009.

