
IEEE International Conference on Robotics and Automation (ICRA), 2013

Planning with Movable Obstacles in Continuous
Environments with Uncertain Dynamics

Martin Levihn Jonathan Scholz Mike Stilman

Abstract— In this paper we present a decision theoretic
planner for the problem of Navigation Among Movable Ob-
stacles (NAMO) operating under conditions faced by real
robotic systems. While planners for the NAMO domain exist,
they typically assume a deterministic environment or rely on
discretization of the configuration and action spaces, preventing
their use in practice. In contrast, we propose a planner that
operates in real-world conditions such as uncertainty about the
parameters of workspace objects and continuous configuration
and action (control) spaces.

To achieve robust NAMO planning despite these conditions,
we introduce a novel integration of Monte Carlo simulation
with an abstract MDP construction. We present theoretical and
empirical arguments for time complexity linear in the number
of obstacles as well as a detailed implementation and examples
from a dynamic simulation environment.

I. INTRODUCTION

One of the hallmarks of human motion planning is the
ability to act based on beliefs about the dynamics of the
objects in the environment. By contrast, state-of-the-art robot
manipulation planners require exact, deterministic models of
these dynamics in order to produce successful plans. This
is a problem for many important tasks, such as Navigation
Among Movable Obstacles (NAMO) [1–5], because it is
unreasonable to expect robots to have perfect models of
all possible objects in natural environments. As a result,
planners for these tasks must be equipped for planning over
a dynamics belief space, and for updating these beliefs with
experience.

In [5] we presented a NAMO planner for discretized state
and action spaces which was capable of taking uncertainty
into account, and allowing the robot to bias its decisions to-
wards plans likely to succeed. While theoretically promising,
there are two fundamental challenges faced by real robotic
systems that prevent the use of the planner. The first is
the existence of continuous state and control spaces, which
typically cannot simply be discretized without sacrificing
either runtime or resolution. Second is the use of closed-
loop controllers and state-space planners for manipulation
on actual robots, as opposed to open-loop action primitives.

In this paper we address both challenges, and present a
method for obtaining and solving the abstract MDP represen-
tation introduced in [5] for continuous state and action spaces
using a realistic manipulation stack. We achieve this by
combining modern sample-based planners with Monte Carlo
simulation of object dynamics. As a result, our algorithm

The authors are with the Center for Robotics and Intelligent Machines
at the Georgia Institute of Technology, Atlanta, GA 30332, USA. Email:
levihn@gatech.edu, jkscholz@gatech.edu, mstilman@cc.gatech.edu

F1 F2

Couch

Love Seat

Table 1

Table 2

F3
F4

F1

F2

F4 GCouch

Love Seat

F3

Couch

Table 1

Love Seat Table 2

Table 1

(a) Robot determines free space re-
gions as subgraphs in a PRM.

F1 F2

Couch

Love Seat

Table 1

Table 2

F3

F4

F1

F2

F4 GCouch

Love Seat

F3

Couch

Table 1

Love Seat Table 2

Table 1

(b) Resulting MDP.

Fig. 1. Robot determines free space regions as subgraphs in a PRM and
constructs MDP accordingly.

provides a decision-theoretic solution to action selection for
the NAMO task on a continuously actuated robot.

This work is organized as follows: following the outline of
related work in Section II, Section III re-caps preliminaries.
The general overview of the proposed method in Section IV
is made concrete with details about our actual implementa-
tion in Section V. After a theoretical analysis and execution
demonstrations in Section VI, the paper concludes with final
remarks in Section VII.

II. RELATED WORK

Navigation and manipulation planning poses a significant
computational challenge even with complete environment in-
formation. Wilfong [6] first proved that deterministic NAMO
with an un-constrained number of obstacles is NP-hard.
Demaine et al. [7] further showed that even the simplified
version of this problem, in which only unit square obstacles
are considered, is also NP-hard.

In [1], Stilman et al. presented a planner that solved a sub-
class of NAMO problems termed LP1 where disconnected
components of free space could be connected independently
by moving a single obstacle. The planner was able to solve
the hard problems presented in [8] and was successfully
implemented on the humanoid robot HRP-2 [4]. Our state
space decomposition is mainly based on the concept of
“free-space regions” introduced in [1]. However, the free-
space concept in [1] was simply a rhetorical device, and
has never actually been used in a NAMO algorithm. The
work presented here takes direct advantage of the free-space
representation. Subsequent work presented a probabilistically
complete algorithm for NAMO domains [2]. However, all
these methods solved NAMO assuming perfect knowledge
of the environment and deterministic action outcomes.

Wu [3] et al. and Kakiuchi et al. [9] introduced the first ex-
tensions to NAMO in Unknown Environments. In [3] a plan-
ner was presented that could solve NAMO problems given



only partial obstacle information. However, that planner is
not capable of handling uncertainty, and instead assumes
that everything within sensor range is ground truth. Further,
actions are again assumed to be deterministic. [9] presented
a system that executes NAMO in unknown environments
on the humanoid robot HRP-2. However, the authors took
a reactive behavior-based approach, rather than attempting
full decision theoretic planning.

In [10] Dogar et al. presented a planning framework
capable of rearranging clutter admits uncertainty. However,
the work is mainly focused on object pose uncertainty rather
than significant uncertainty in the manipulation dynamics.
In addition, while the framework explicitly represents the
existing uncertainty and computes plans that are robust to
it, the framework does not reason about which objects to
manipulate in order to increase the success probability. In
contrast, the presented work allows the robot to bias its
decisions at plan time in order to compute policies that are
likely to succeed.

III. PRELIMINARIES

The presented algorithm is based on the theory of an MDP
and Monte Carlo simulation. This section briefly introduces
the appropriate definitions.

A. Markov Decision Processes

The Markov Decision Process (MDP) is a model for stochas-
tic planning, and the foundation of our algorithm. We define
an MDP M = (S,A, T a

ss′ , R
a
s , γ) for a finite set of states S,

a finite set of actions A, a transition model T a
ss′ = P (s′|s, a)

specifying the probability of reaching state s′ by taking
action a in state s, a reward model Ra

s = r(s, a) specifying
the immediate reward received when taking action a in state
s, and the discount factor 0 ≤ γ < 1.

The standard technique for solving MDPs is Value Iter-
ation [11], which is used to find the optimal policy π∗ :
f(s)→ a which maps states to actions in order to maximize
the expected long-term reward, or value V (s) for all states
s ∈ S. In general, value iteration (VI) has a polynomial
runtime in the number of states (with fixed error ε).

B. Monte Carlo Simulation

Monte Carlo simulation is a statistical tool relying on the
law of large numbers to numerically solve problems that
are difficult or impossible to solve analytically. To obtain
an output measure for a function f = H(X) with dependent
parameters X governed by a probability distribution P (X),
Monte Carlo simulation precedes by repeatedly sampling a
specific vector X ∼ P (X) and obtaining the output value
f = H(X). Statistical inference is then performed on the
obtained output values [12].

In the following sections we demonstrate how these two
very different techniques can be combined to obtain a NAMO
planner for continuously actuated robots admits uncertainty
in the manipulation dynamics.

IV. APPROACH

The next section provides a general overview of the proposed
planner. The goal of our algorithm is to achieve decision-
theoretic planning in the NAMO task for dynamically situ-
ated robots. Here the term “dynamically situated” refers to
both the existence of continuous state and control spaces, as
well as the customary stack of closed-loop controllers and
planners which have been developed to accommodate these
situations.

We approach this problem by building on previous work,
which introduced an “approximate” MDP that closely re-
sembles the real problem but can be solved in linear time
for typical environments [5]. The construction of this MDP
builds on two insights of the domain. First, there is a natural
abstraction from the low-level state space into a small set
of abstract states, which we call “free-space regions” to
indicate that the robot can move collision-free between any
two configurations within the region. This suggests also a
small number of implied abstract actions for maneuvering
in this abstract state space: since each free space region
is circumscribed by obstacles, we can define the abstract
action “create an opening to neighboring free-space” for each
obstacle. This property is the basis for the state and action
spaces in the NAMO MDP, visualized in Figure 1.

The second insight is that we can capture the transition and
reward dynamics in this abstract representation by computing
a low-level manipulation policy for each abstract action.
The transition model, T a

ss′ , is used to model uncertainty in
manipulation dynamics, such as might occur if obstacle mass
or friction is unknown, and should reflect the likelihood of
actually creating an opening between the free spaces. The
reward function, Ra

s , reflects the expected reward (or cost)
in terms of required time and physical work for creating such
an opening.

Together these two ideas permit the construction of a
hierarchical MDP, which can be solved in a manner anal-
ogous to MAX-Q [13]. The obtained policy describes both
a mapping for the abstract representation – from a given
free space region to an object to manipulate, as well as the
raw representation – from a given obstacle state to a control
vector.

V. IMPLEMENTATION

To construct the proposed NAMO planner we must provide
appropriate methods for deriving all components of the MDP
(S,A, T a

ss′ , R
a
s ). However, none of the key ideas from [5]

transfer directly to the continuous case for dynamically
situated robots. The method for free-space detection relies
on a discrete state space, and the use of Monte-Carlo Tree
Search (MCTS) for manipulation planning requires both a
discrete state space as well as a finite set of open loop
transition primitives. In this section we address each of these
challenge in turn.

A. States and Actions

The efficiency of our MDP approach depends on efficient
methods for identifying the independent free space regions



Algorithm 1: NAVIGATE NAMO
Input: W : world, k: number samples for Monte Carlo

simulation, cg: goal, oldMDP = ∅: previous
MDP if any

// determine MDP:
1 MDP ← GET STATES AND ACTIONS(W );
2 COPY VALUES(oldMDP,MDP );
// perform value iteration:

3 while something changes do
4 for s ∈ S do
5 if getFs(s) contains goal then
6 s.v ←goal reward;
7 continue;

8 s.v ← 0;
9 for a ∈ getActions(s) do

10 att← [];
11 for i← 0 to k do

// sample physical param:
12 a.obj.pp← SAMPLE(P (Ω));
13 att[i]←CONNECT FS(a.obj, a.toFs)

14 s′ ← getState(a.toFs);
15 succ← {succesfull plans ∈ att};
16 T a

ss′ ←
|succ|

k ;
17 Ra

s ← 1
|succ|

∑
s∈succ αF (s)+βτ(s)+γT (s)

qa ← T a
ss′R

a
s + γs′.v;

18 if qa > s.v then
19 s.v ← qa;
20 π(s)← a;

// fill robot task queue:
21 sr ← getState(robot.config);
22 robot.addTask(navigateTo(π(sr).graspPos));
23 robot.addTask(executeManip(π(sr)));
24 robot.addTask(updateDistributions());
25 robot.addTask(NAVIGATE NAMO(W,k, cg,MDP ))

and their associated actions. In [5] the state-space was
discretized, which allowed an O(logN) Dijkstra’s approach
(“wavefront expansion”), where N represents the number
of states. For a typical robot in continuous state and con-
trol spaces, we have two options. First, we could simply
discretize and re-use the wavefront approach. However, as
shown in [14], producing reasonable behavior on real robots
would require far too many states. Instead, we adopt a
sampling approach that has been proven in the planning
literature and build a roadmap over the state space. The main
insight behind this approach is that the resulting roadmap will
contain disconnected subgraphs for precisely the free space
regions that we are attempting to identify.

PRM State Clustering: The probabilistic roadmap (PRM)
[15] algorithm samples random configurations within the
state-space and connects nearby collision-free samples if
there is a collision-free path between them. Constructing a
PRM in a disconnected configuration space will consequently
return multiple disconnected subgraphs. Each of these sub-

graphs now encode separate free space regions and together
they yield the MDP states. This is visualized in Figure 1.

Having determined the MDP states, the actions need
to be determined. This is done by finding the obstacles
disconnecting two free space regions. We accomplish this
with a slight extension to the PRM construction phase:
Instead of only considering random state-space samples
during the construction of the PRM, we also use samples
of valid grasping poses for objects. If, upon termination of
the PRM construction phase, sampled grasping poses of the
same obstacle belong to different subgraphs, the obstacle is
considered disconnecting the free spaces and an according
action in the MDP is created. This is summarized in the
function call in line 1, Algorithm 1.

B. Transitions and Rewards

In [5] we showed that for discrete state-action spaces we
can compute ε-optimal manipulation policies using MCTS,
which is limited by the planning horizon rather than the total
number of states. By construction, these policies provided
estimates of the transition probabilities and rewards for
each action in the free-space MDP. Here we introduce an
alternative to MCTS which is appropriate for the case of
dynamically situated robots.

The Object Property Model: The main idea is to represent
transition uncertainty close to its source as object property
uncertainty, which we capture using distributions over the
relevant physical quantities. We define Ω as the minimal
set of quantities governing object dynamics on a plane,
and include mass and one or more anisotropic (wheel)
constraints. Importantly, Ω should be viewed as a set of
auxiliary variables for predicting transition dynamics, and
not a state parameter itself.

To understand this as a stochastic transition model, con-
sider the special case of zero-uncertainty where P (Ω) = δΩ,
with δΩ denoting the dirac delta function on a particular
assignment to Ω. Here the model reduces to a deterministic
environment governed by rigid body physics and the chosen
controllers. Consequently, the transition model reduces to 0
or 1 and the reward function becomes a deterministic func-
tion of the physical work required by the robot to manipulate
an object to create an opening. For the general case P (Ω)
is an arbitrary distribution over Ω (e.g. multivariate-normal),
we may generate samples of the transition dynamics in the
NAMO MDP by sampling object parameters from P (Ω).
Repeating this process and performing statistical inference
over the obtained transition and reward models represents a
stochastic simulation with outputs that reflect the expected
interaction between the possible physical properties and the
robot.

Our particular choice of parameters aims to satisfy the LP1

class of NAMO problems [1], where regions are separated
by individual, disconnected obstacles. We therefore require
parameters to describe rigid-body dynamics for non-coupled
objects, such as carts, chairs, tables with lockable wheels
and casters. The central aspect governing the dynamics
of this class of objects is contact with the ground. This



includes isotropic friction forces, such as table feet, and
more generally anisotropic friction forces to accommodate
wheels. Other types of constraints, such as prismatic and
revolute joints, serve to couple multiple bodies, and remain
a challenge for future work.

In 2D, an anisotropic friction joint between the ground and
a point on the target object can be represented with five new
parameters per joint: {x, y, θ,mux,muy}, corresponding to
2D pose and orthogonal friction coefficients. For typical
wheels, one of these friction coefficients is close to zero, and
the other close to one. Furthermore, two joints are sufficient
to describe any wheeled body in 2D, because any two joints
at a given orientation can be expressed as a single joint
along their common axis, and more than two joints at unique
orientations serve to fully constrain the system (we do not
consider what happens when constraints are violated). This
means that the transition dynamics of arbitrary disconnected
obstacles in 2D, including shopping carts, wheelchairs, and
tables with lockable wheels, can be fully specified with
1 + 5 × 2 = 11 parameters. The first parameter is reserved
for mass, which affects friction forces as well as the overall
effort of manipulation.

Of these, mass m can take values in R+, friction coeffi-
cients µx, µy can take values in [0, 1], position parameters
x, y can take values within the bounds of the object [a, b],
and orientation can take values in [−pi, pi]. To represent the
robot’s beliefs over these parameters, we assign the following
distributions:
• m ∼ log-normal(µm, σm)
• µx, µy ∼ truncated-normal(µf , σ

2
f , 0, 1)

• x, y ∼ truncated-normal(µp, σ
2
p, a, b)

• θ ∼ von-mises(µt, κt)

Using the object property model, it is possible to solve
the NAMO MDP for dynamically situated robots. Recall
that the transition function Thl for the NAMO MDP en-
codes the probability of successfully creating an opening
and the reward function Rhl the expected reward (or cost)
in terms of required time and physical work for creating
such an opening. While our previous work for discretized
environments in [5] obtained estimates for these quantities
by introducing and sampling a low-level MDP, our solution
method for continuous environments builds on Monte Carlo
simulation to obtain estimates of Thl and Rhl directly. The
trade-off is that direct simulation discards all intermediate
results, and maintains no policy information for visited states.

To see how estimates of Thl and Rhl can be obtained
from Monte-Carlo simulation, let T a

ss′ and Ra
s represent the

specific instance of the transition and reward function for
action a and states s and s′. To obtain value estimates, we
perform the following evaluation k times1:

1) Sample world w with object parameters ω ∼ P (Ω) for
all objects.

2) Call a manipulation planner on w trying to create an
opening between the free-spaces represented by s and
s′ using the object represented by a and save the result.

1k may be a fixed value or a function of the degree of uncertainty

T a
ss′ is now set to be the ratio of manipulation plans that

succeeded in creating an opening.

T a
ss′ = P (s′ = target|s, a) =

|succ|
k

(1)

Ra
s is set to:

Ra
s =

1

|succ|
∑

s∈succ
αF (s) + βτ(s) + γT (s) (2)

where succ denotes the set of successful manipulation
plans, F (·), τ(·), T (·) functions returning the force, torque
and time required by a specific plan respectably, and α, β, γ
representing weights. (Note that we can not just fix a
manipulation plan and evaluate it for different samples
of P (Ω) as this would yield an estimate of the success
probability of a specific plan rather than provide insight into
the general success probability of manipulating the object.)
Given these estimates, Mhl can be solved using standard
value iteration. Algorithm 1 summaries the solution approach
and the following section demonstrates a concrete example
implementation.

C. Implementation Details

While the discussion so far has presented a general approach,
we now present our specific implementation of the Monte
Carlo simulation for obtaining T a

ss′ and Ra
s . The reader

is encouraged to keep in mind that this is an example
implementation and is likely to be adapted to the specific
robot system and environment at hand.

Model Sampling: In our implementation we assume in-
dependence between the individual object parameters and
obtain samples of the joint distribution P (Ω) by sampling
each parameter independently according to its distribution.

Manipulation Planning: Given a sample of P (Ω), it has
to be determined if, and at what cost, an opening between
the free spaces represented by s and s′ can be created. To
allow planning with arbitrary constraints on the obstacles
and robot, we implemented a kinodynamic-RRT (RRTKD)
planner [16]. RRTKD operates in the phase space of the
robot – configuration and velocity components for each
degree of freedom – and searches by sampling its control
space. The RRTKD search terminates if either a number of
maximum nodes m have been reached or an opening has
been created2.

Unfortunately, the verification of an opening is a non-
trivial task in itself, and is therefore only performed every t
node expansions. We perform opening verification by check-
ing the existence of a path between the free spaces using
a low-dimensional RRT [17] (RRTFP ) that only considers
the robot’s footprint and is limited to a maximum number of
nodes (alternatively one could use a visibility graph planner
[18] to avoid false negatives caused by the node limit).
The start configuration for RRTFP is given by the robot’s

2m should be chosen to be small as the creation of an opening is typically
a very local manipulation. It can also be set based on the value of the goal
free space to take into account the value of creating such an opening, similar
to the dynamic horizon in [5].



configuration in the node in RRTKD that triggered the
opening verification while the goal configuration is set to
be a random configuration within the goal free space. If
a path is found, an opening is reported. The astute reader
will observe that openings might also be gleaned from the
roadmap graphs. However, this is only possible if the graphs
are maintained in synchrony with the manipulation planner,
which we determined to be too expensive to do in practice.

In Algorithm 1, these steps of the Monte Carlo simulation
method are summarised in lines 10-11.

Computing Transition and Rewards: T a
ss′ and Ra

s are now
set according to Eq. 1 and Eq. 2, respectively.

D. Execution

Recall that value iteration requires state and action sets S and
A, as well as transition and reward functions T a

ss′ and Ra
s .

Section V-A describes how to obtain S and A by analyzing
the output of a PRM. Eq. 1 describes the generative transition
dynamics at the free-space level, and Eq. 2 the reward for
free-space actions. With these quantities defined it is possible
to perform value iteration on the free-space MDP.

This yields a policy over the free space regions. The robot
then directly executes the action defined for its current free
space: it navigates to the grasping position and executes the
manipulation. After the execution of the manipulation plan,
the robot may update its distributions based on the interaction
with the object. In our implementation, we prototyped this
“learning” step by updating the probability of rotational
constraints for rotation-only events: if after an applied off-
axis force the body merely rotated about its center, we
increase the probability of a rotational constraint about its
center of mass. Future work will investigate the use of more
general statistical inference techniques over the entire object
property representation.

The robot then recursively calls Algorithm 1, lines 21-25.
To avoid intensive re-computations in the recursive call, our
algorithm attempts to reuse information by copying simula-
tion results for all actions leading to and from unchanged
states. To identity these states, we propagate a “clean” bit
outwards from the goal state until a state is reached that
does not have a corresponding state in the new environment
configuration. Figure 2 shows an example of duplicated
information. Notice that information associated with objects
adjacent to the changed free space is not preserved as the
manipulation plans might not be feasible anymore. This is
done in the function COPY INFO 2, Algorithm 1.

The following section argues for the usefulness of the
proposed framework.

VI. EVALUATION

We have implemented a prototype of the proposed frame-
work in a simulation using Python and the open source
2D physics engine pyBox2D [19]. The robot is modeled
as a nonholonomic 5 Degree of freedom (DOF) mobile
manipulator with a 3 DOF base and a 2 DOF arm.

Prior to demonstrating execution examples at the end of
the section, we provide a general complexity analysis of the

F1 F2

F3

F4

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAA 

F5
F6

F1

F2

F3

F4
F5

F6

(a) Configuration prior to execution.

F1 F2

F3

F4

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAA 

F5
F6

F1

F2

F3

F4
F5

F6

(b) After execution. Information
within shaded area is duplicated.

Fig. 2. Robot determines information to copy to new MDP.

proposed framework and present obtained runtimes. Recall
that the difficulty of the NAMO domain is caused by the
exponential dependence on the number of movable obstacles.
We show that for non-degenerate environments the proposed
framework is linear in the number of movable obstacles.

A. Complexity

The proposed framework executes value iteration on the free
space MDP. Within each loop of value iteration we perform
Monte Carlo simulation over a sample-based planner (RRT).
The run-time of the Monte Carlo simulation depends on the
number of iterations k, a constant, and the chosen manipu-
lation planner. In general, the run-time of the manipulation
planner depends on the size of the state space of the robot and
the obstacle to manipulate. However, as all other obstacles
are considered to be static during manipulation planning, it
is not a function of the number of movable obstacles in the
environment (also recall that we have a node limit). The
complexity of the Monte Carlo simulation is consequently
constant in the number of movable obstacles |O| and the
complexity of the framework is governed by the execution
of value iteration on the free space MDP.

The size of the state space of the free space MDP is linear
in |O| (worst case 2|O| for infinite obstacles intersecting
in a star pattern). While the complexity of value iteration
is polynomial in the size of the state space in general,
it is linear if the transition matrix T has on average a
constant number of next-states with non-zero probability. In
[5] we showed that T for the free space MDP fulfills this
requirement if the adjacency graph G over free space regions
is planar. G has vertices for every free space region and edges
between vertices if the free spaces are disconnect through a
single obstacle. This is generally fulfilled for non-degenerate
environments.

In conclusion, the proposed framework has a time com-
plexity linear in the number of obstacles.

In addition to the theoretical complexity analysis, we
performed a preliminary empirical evaluation of 70 trials
with varying environment sizes, objects, object placements,
and object parameter distributions. The goal configuration



0

10

20

30

40

0 5 10 15 20

R
u

n
ti

m
e

 (
m

in
) 

# Obstacles 

Fig. 3. Average runtimes for 70 trails.

was always in a different free space region than the initial
robot configuration. Figure 3 summarizes the runtime as
a function of the number of obstacles. These preliminary
experiments with manually designed environments confirm
linear dependence. The obtained runtimes are in the range
of minutes, however orders of magnitudes of speedup can be
achieved for more efficient programming languages, collision
detection algorithms and parallelisation of the Monte Carlo
simulation runs. Given the linear relationship, such constant
factors present the bottleneck rather than the algorithm
itself and are the subject of our future work. These results
provide a general argument for the usefulness of the proposed
framework. We now detail some execution examples.

B. Results

While the accompanying video demonstrates different exe-
cution trials with up to 30 obstacles, this section highlights
some example behaviors of our planner.

1) Uncertain Manipulation: Figure 4(a) shows the initial
configuration of a simple environment. The robot has to
reach the goal, but the couch prevents it from reaching
the free space containing the goal. In addition, there is
uncertainty associated with the parameters of the couch.
The robot executes our proposed framework, beginning by
constructing a PRM over the space, shown in light gray.
After determining the couch to be the only obstacle whose
successful manipulation would clear the goal, the robot
performs Monte Carlo simulation over manipulation plans
for the couch. It then chooses a manipulation plan with the
expected final couch configuration shown in Figure 4(b). If
the couch would indeed result in the expected configuration
after the manipulation, the robot could circumvent the couch
on the bottom and reach the goal.

However, because the exact object parameters are un-
known to the robot, the execution of the plan instead results
in the configuration shown in Figure 4(c). Realizing that the
required connectivity of the free spaces has not been reached,
the robot re-computes based on the new configuration. The
robot decides instead to push the couch down a bit and
move past it above. Figure 4(d) shows that the robot now
successfully clears the goal.

2) Decision Update: Figure 5(a) demonstrates a similar
setup but with multiple disconnecting obstacles. The robot
again has uncertainty about the objects, but this time also
begins with low probability that any of the objects are
constrained. It decides to move the lighter table. The ex-
pected outcome of the chosen manipulation plan is shown in
Figure 5(b). However, as the table is in fact constrained to
only rotate, the robot instead finds itself in the configuration

(a) Initial configuration (b) Expected outcome: robot could
drive below the couch.

(c) Actual behavior: robot recom-
putes based on new configuration.

(d) Moves couch further down and
circumvents above.

Fig. 4. Robot clears goal despite couch behaving unexpectedly.

(a) Initial configuration (b) Expected outcome: table has low
probability of being constrained.

(c) Actual behavior: table is con-
strained. Robot increases probabil-
ity of table being rotationally con-
strained.

(d) Based on the new information the
robot decides to move the couch.

Fig. 5. Robot incorporates new information to enhance the plan.

visualized in Figure 5(c). The robot detects that, despite the
applied force, the object has only rotated, not moved. The
robot updates its belief about the table being rotationally con-
strained to 98%. Given this new information, the subsequent
plan involves moving the couch instead. This finally allows
it to successfully clear the goal as visualized in Figure 5(d).

While general inference techniques for updating the distri-
butions given observed object behaviors is future work, these
examples show that our framework allows the robot to use
updated belief distributions.

3) Large Execution Example: Figure 6 shows an execu-
tion example with more than 30 obstacles. The accompany-
ing video demonstrates further execution examples.



(a) Initial configuration. (b) Execution path of the robot.

Fig. 6. Execution example with more than 30 obstacles.

VII. CONCLUSION

In this paper, we have presented a decision-theoretic NAMO
planner that is applicable to modern robotic systems. The
planner is capable of taking uncertainty about object pa-
rameters into account while guaranteeing run-time linear
in the number of objects. To achieve this we integrated
an established NAMO MDP formulation with Monte Carlo
simulation of world dynamics. The use of a full physics
engine as the core of a stochastic dynamics model is key
to our ability to model arbitrary obstacle interactions. We
feel that our combination of stochastic planning and phys-
ical simulation is an important step towards the flexibility
necessary to operate in natural environments.

We demonstrated a successful implementation operating
in continuous state and action spaces for a non-holonomic
robot and obstacles and have shown unprecedented behavior
in the NAMO domain.

In future work, we will develop more general inference
methods for updating the robot’s beliefs over object parame-
ters by observing their actual reactions to applied forces. In
addition, we will incorporate pose uncertainty, and develop
full belief-space planners which are grounded in rich priors
on the physical behavior of objects.

ACKNOWLEDGMENTS

This research was supported by NSF grant IIS-1017076.

REFERENCES

[1] M. Stilman and J. J. Kuffner, “Navigation among movable obsta-
cles: Real-time reasoning in complex environments,” in Journal of
Humanoid Robotics, 2004, pp. 322–341.

[2] J. Van Den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha,
“Path planning among movable obstacles: a probabilistically complete
approach,” Workshop on Algorithmic Foundation of Robotics, 2008.

[3] H.Wu, M. Levihn, and M. Stilman, “Navigation among movable
obstacles in unknown environments,” in IEEE/RSJ Int. Conf. On
Intelligent Robots and Systems (IROS 10), October 2010.

[4] M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner, “Planning and
executing navigation among movable obstacles,” in IEEE/RSJ Int.
Conf. On Intelligent Robots and Systems (IROS 06), October 2006.

[5] M. Levihn, J. Scholz, and M. Stilman, “Hierarchical decision theoretic
planning for navigation among movable obstacles,” in Workshop on the
Algorithmic Foundations of Robotics (WAFR’12), June 2012.

[6] G. Wilfong, “Motion planning in the presence of movable obstacles,”
in SCG ’88: Proceedings of the fourth annual symposium on Compu-
tational geometry. New York, NY, USA: ACM, 1988, pp. 279–288.

[7] E. Demaine, J. O’Rourke, and M. L. Demaine, “Pushpush and push-1
are np-hard in 2d,” in In Proceedings of the 12th Canadian Conference
on Computational Geometry, 2000, pp. 211–219.

[8] P. Chen and Y. Hwang, “Practical path planning among movable
obstacles,” in In Proceedings of the IEEE International Conference
on Robotics and Automation, 1991, pp. 444–449.

[9] Y. Kakiuchi, R. Ueda, K. Kobayashi, K. Okada, and M. Inaba,
“Working with movable obstacles using on-line environment percep-
tion reconstruction using active sensing and color range sensor,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2010.

[10] M. Dogar and S. Srinivasa, “A planning framework for non-prehensile
manipulation under clutter and uncertainty,” Autonomous Robots, pp.
1–20, 2012.

[11] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[12] C. Lemieux, Monte Carlo and Quasi-Monte Carlo Sampling. Springer
Verlag, 2009.

[13] T. Dietterich, “An overview of maxq hierarchical reinforcement learn-
ing,” Abstraction, Reformulation, and Approximation, pp. 26–44, 2000.

[14] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[15] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pp.
566–580, 1996.

[16] S. LaValle and J. Kuffner Jr, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[17] J. Kuffner Jr and S. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, vol. 2.
IEEE, 2000, pp. 995–1001.

[18] T. Lozano-Pérez and M. Wesley, “An algorithm for planning collision-
free paths among polyhedral obstacles,” Communications of the ACM,
vol. 22, no. 10, pp. 560–570, 1979.

[19] “pybox2d,” http://code.google.com/p/pybox2d/, June 2012.


