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Autonomous Environment Manipulation
to Assist Humanoid Locomotion

Martin Levihn Koichi Nishiwaki Satoshi Kagami Mike Stilman

Abstract— Legged robots have unique capabilities to traverse
complex environments by stepping over and onto objects. Many
footstep planners have been developed to take advantage of
these capabilities. However, legged robots also have inherent
constraints such as a maximum step height and distance. These
constraints typically limit their reachable space, independent
of footstep planning. Thus, we propose that robots such as
humanoid robots that have manipulation capabilities should use
them. A robot should autonomously modify its environment if
necessary. We present a system that enabled a real robot to use
a box to create itself a stair step or place a board on the ground
to cross a gap, allowing it to reach its otherwise unreachable
goal configuration.

I. INTRODUCTION

Like humans, humanoid robots have the capability to step
over and onto objects. However, also like humans, robots
have inherent constraints such as a maximum step height and
distance. Humans overcome their limitations by modifying
their environments. Robots should do the same thing.

Consider grabbing a box to stand on to reach up to a
bookshelf or placing a board over a gap in order to step
over it. These kind of reasoning patterns become essential for
robots that are expected to operate autonomously in complex,
unstructured environments such as disaster areas. This work
presents the first planning system to allow a humanoid robot
to make such decisions autonomously. Figure 1 shows an
example execution of a HRP-2 robot using the proposed
system. The robot autonomously decides to place an object
in front of the platform so that it can actually step up the
platform to reach its goal configuration.

To achieve such behavior, we introduce the concept of
EnvironmenT Aware Planning (ETAP). ETAP lets the robot
reason about tapping into resources available in the environ-
ment to complete its task. ETAP gives a robot the capability
to use objects in its environment to assist its locomotion
capabilities.

In order to handle the exponential search space com-
plexity resulting from considering environment modifications
[15], our proposed ETAP system extends existing work in
footstep planning with the concept of constraint relaxation.
The footstep planner is allowed to violate robot constraints
such as maximum step width or height if necessary. While,
the resulting path might not be directly executable by a
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Fig. 1. Robot decides to place a box in front of the platform to be able
to step up the platform.

locomotion controller, it provides a heuristic for determining
how the robot should use its environment to accomplish
the task. For example, in Figure 1 the initial footstep plan
contains a constraint violation at the edge of the platform.
The plan requires the robot to step higher than it physically
can. The proposed system uses this information to guide the
robot to grab the box and place it in front of the platform.

The remainder of this work is organized as follows:
Section II presents related work, and Section III provides the
problem specification. The general overview of the proposed
method in Section IV is made concrete with details about
our actual implementation in Section V. After discussing the
performed experiments in Section VI, the paper concludes
with final remarks in Section VII.

II. RELATED WORK

Over the last decades there have been significant advances
in locomotion planning [1–7] and manipulation planning
[8–11] for humanoid robots. However, to our knowledge
manipulation has not been used to assist locomotion.

Given the complexity of humanoid robots, considering all
degrees of freedom of the system during motion planning
is typically limited to short-term motions [8]. Instead, for
long horizon navigation tasks one common approach is to
reduce the search space dimensionality by separating the
footstep planning from the locomotion controller [1–4]. We
adopt this approach in this work. Typically the footstep
planner determines a sequence of steps to be executed by
the robot and the locomotion controller then tracks these
steps. Different search techniques have been explored for this
general concept. While [1] utilizes A* search and an adaptive
action set, [5] uses a sampling based search technique
and half-steps. [2] utilizes D* Lite and continuous footstep



locations. In addition, the work presented in [2] introduces
methods for efficient collision checking for footsteps. [7]
builds on anytime repairing A* (ARA*) and randomized A*
(R*) planners to reduce planning time while providing sub-
optimality bounds. [6] introduces a bounding box method
for footstep planning that sill allows the robot to step over
objects. While all of these methods are complementary to our
work, they treat the environment as something given that can
not be modified by the robot. They do not take full advantage
of the capabilities of a humanoid robot.

The concept of autonomous environment modification to
assist a robot’s locomotion was introduced by Wilfong [12].
The first practical planner was proposed by Chen [13].
Stilman and Okada presented this domain as Navigation
Among Movable Obstacles (NAMO) for humanoid robots
[14–17]. This domain enables a robot to move objects out
of its way to clear a path to its goal configuration. NAMO
planning systems were successfully executed on the HRP-2
robot [18, 19]. However, in all of these methods the robot
preserves environment objects as hostile entities, that hinder
its locomotion. In contrast, we propose that the robot should
perceive environment objects as tools that could assist its
locomotion.

III. PROBLEM SPECIFICATION

We specify the environment as the following set of entities:
• R - a humanoid robot,
• S - a set of static objects,
• O - a set of manipulable objects.
The robot’s task is to reach a goal configuration goal and

it is allowed to manipulate the environment to its advantage.

This work assumes full world knowledge. This includes
the robot’s position as well as all object locations and
properties (see below for details). Additionally, this work
focuses on cases where a single object manipulation is
sufficient to resolve a single constraint violation. However,
the same object may be used to resolve multiple constraint
violations during the entire execution.

IV. ALGORITHM

The algorithm takes advantage of existing research in hu-
manoid locomotion planning and adopts the common ap-
proach of separating footstep planning from the locomotion
controller [1]. However, to allow the robot to use environ-
ment objects as tools these methods have to be extended.

Considering all possible environment configurations is
exponentially complex in the number of objects [15]. In
order to resolve this complexity we apply the concept of
constraint relaxed planning. The planner is allowed to violate
the constraints of the robot in order to guide the decision
making towards useful environment configurations. By cre-
ating a plan that violates the constraints, the planner can
hypothesize a scenario where the robot would be able to
follow a footstep plan to the goal, if only the environment
was locally modified. This allows the planner to focus on

Algorithm 1: ETAP
Input: R: robot, S: static objs, O: manipl. objs, g: goal

1 while R not at goal do
2 UPDATE(); // update robot and obj loc
3 moPl← CONSTR RELAXED PLANNER(R, g);
4 if moPl contains constraint violations then
5 v ← GET FIRST VIOLATION(moPl);

// get obj and obj target:
6 (o, o t)← RESOLVE VIOLATION(v, R, O);
7 if o is NULL then
8 return; // goal not reachable

9 o g ← GET GRASP POS(R, o);
10 pickP l← LOCOMOTION PLANNER(R, o g);
11 R.execute(pickP l);
12 UPDATE();
13 grasp← GET GRASP MOTION(R, o);
14 R.execute(grasp);
15 UPDATE();
16 dropP l← LOCOMOTION PLANNER(R, o t);
17 R.execute(dropP l);
18 UPDATE();
19 drop← GET DROP MOTION(R, o, o t);
20 R.execute(drop);

21 else
22 R.execute(moPl);

these local modifications. To prevent the planner from unnec-
essarily violating robot constraints, a heuristic cost penalty
is applied for each constraint violation. The magnitude of
this penalty determines the planner’s willingness to explore
detours before considering environment modifications.

Inevitable inaccuracies in actuation that occur on a real
robot system make it difficult to exactly execute a detailed
long horizon plan [20]. If the robot is planning detailed mo-
tions based on future environment configurations, the robot
risks executing actions not supported by the environment. We
therefore interleave planning and execution in our system
[21]. Later modifications are not planned for until after
the robot completed its current modification and the actual
resulting environment configuration is determined1.

Algorithm 1 summarizes the proposed ETAP framework.
The algorithm begins with calling a constraint relaxed hu-
manoid locomotion planner (line 3). In case the resulting plan
violates constraints, an object and a target location to resolve
the first violation are determined (line 4 - 6). The robot
then moves to a grasp position, updates its configuration
and grasps the object (line 9 - 14). Again updating the
configurations the robot moves to the object target location
and places the object (line 15 - 20). The robot repeats this
procedure until it is at the goal.

1An alternative method is to trigger re-planning if too much divergence
from the plan occurs. However we empirically found that this is too
expensive in practice for the long horizon tasks considered in this work
and requires substantial tuning of the re-planning thresholds.



V. IMPLEMENTATION

While the previous section provided a general overview of
the proposed system, this section provides details of our
implementation.

A. Constrained Relaxed Planner

The algorithm presented above requires a humanoid lo-
comotion planner extended with the concept of constraint
relaxation. We build on the planner presented in [1]. The
planner performs an A* search through the space of possible
footstep actions and locally adapts the action set if some
actions are not possible due to environment properties. To
allow the planner to violate robot constraints if necessary,
we extend the action set the planner uses. We add actions for
stepping substantially higher and further than the actual robot
can do. To avoid unnecessary environment modifications,
these actions are assigned a high cost. The increased cost of
these actions leads the footstep planner to first explore longer
environment paths before considering paths that include
constraint violating actions.

B. Constraint Resolution

To resolve a constraint violation, an appropriate environment
object and target location need to be chosen. In analogy to
affordance [22], and similar to [2], we include a task-related
object attribute representation. In our implementation, each
object contains the following attributes:

• (x, y, z, θ): position and orientation,
• weight: the object’s weight,
• maxW : the max weight the object can support,
• FS: a set of flat surfaces the robot could potentially

step on defined relative to the object center,
• S: a set of surfaces defined relative to the object center

that have to be supported by flat ground,
• maxD: the max height difference that is allowed be-

tween the surfaces in S,
• GC: a set of possible grasp configurations for the object

defined relative to the object center,
• G: a set of grasp primitives for the object
• D: a set of drop primitives for the object

For a given constraint violation, the algorithm first selects
all manipulable objects that could potentially be used to
modify the environment such that the robot could traverse the
according location. In a pre-processing step the algorithm re-
jects all objects that do not fulfill the minimum requirements
to support the robot. This includes support weight and the
size of the biggest surfaces in FS as well as all objects that
are too heavy for the robot to manipulate. The remaining
objects are then further filtered according to the specific
violation at hand. For example, if the robot is required to
step higher than it can, only objects whose height is such
that the robot can step on it and can step the remaining
height are preserved. Similarly, if the violation required the
robot to step further than supported, the algorithm only keeps
objects whose largest side of any surface in FS is at least

Algorithm 2: RESOLVE VIOLATION
Input: v: violation, R: robot, O: manipl. objs
Output: o: suggested obj, o t: suggested target loc

1 candidates← {o ∈ O|o can be used to resolve
constraint};

2 SORT BY DIST(candidates, R);
3 for o ∈ candidates do
4 if R can not reach o then
5 continue;// skip o

6 o t← FIND TARGET LOCATION(o, v);
7 if o t is NULL then
8 continue; // skip o

9 return (o, o t);

10 return (NULL, NULL); // Failure

as large as the required step width. All remaining candidate
objects are then sorted based on distance to the current robot
configuration.

The sorted list is then iterated through and the first object
that can successfully be reached by the robot and placed
at the constraint violation location is returned. To verify
reachability of an object the algorithm iterates through G
and calls a non-modified version of the footstep planner
presented in [1]2. In order to find a target location for the
object, the planner utilized the 2.5D grid map used by the
footstep planner. The planner performs a local search around
the coordinates of the violation and the last valid action
within the actual plan and attempts to place the object. A
successful object placement is achieved if all surfaces defined
in S are supported by flat ground with a height difference
of less then maxD. The local search perimeter is set such
that a placement at any location within the perimeter would
still resolve the constraint violation. We typically set the
perimeter size equal to a robot step distance. For example,
this would allow the planner to place the object at most step
distance from the platform in Figure 1, still allowing the
robot to step on the platform if on top of the box. If the
object is either not reachable or no target location can be
found, the next object in the list is checked3. This procedure
is summarized in Algorithm 2.

C. Object Grasping and Dropping

If the robot has reached the grasp configuration for an object
it needs to grasp the object. Similarly if it has reached the
drop location for an object it needs to drop the object. To
achieve this the planner simply selects a motion primitive
according to its configuration relative to the object or target
location.

2As we are only interested in verifying reachability at this point, we use
a relatively large goal threshold here to reduce planning time.

3Our implementation does not verify reachability between the object grasp
configuration and the drop location. We assume that the robot can at least
return to its current location with the object and then move to the drop
location. However, it is straight forward to extend the algorithm to also
verify drop location reachability directly.



(a) Start configuration (b) Constraint relaxed planning output (c) Constraint resolution output

(d) Configuration after object pickup (e) Drop planning output (f) Drop motion execution

(g) Constraint relaxed planning output (h) Locomotion to goal configuration (i) Final configuration

Fig. 2. Proposed humanoid locomotion planning system: Stairs Example.

In our implementation the motion primitives are sets of
precomputed motions defined as empirically sampled joint-
space configurations. The joint angles are determined for dif-
ferent objects and grasp configurations. To execute a specific
primitive, a spline-interpolated trajectory of the according
joint angles is computed. The trajectories are tracked by PID
control. The weight of the object is then incorporated or
removed from the robot model respectively.

VI. EXPERIMENTS

To verify the proposed algorithm, we implemented it on an
actual robot system and in simulation.

A. Real Robot

We implemented our algorithm on the HRP-2 robot platform
and utilized existing locomotion and balance controllers for
the robot [23] in our experiments. We also used a real-time
motion capture system [24] to localize the robot and all
objects within the 25m2 workspace.

We tested our system in different scenarios.
1) Stairs: The first scenario can be seen in Figure 2. A

video of the execution can be accessed at http://www.
cc.gatech.edu/˜mlevihn3/etap/. In this setup the
robot was commanded to take on a configuration at the end

of the platform in front of it, as visualized in Figure 2(a).
The platform was higher than the robot can step.

Figure 2(b) visualizes the output from the constraint
relaxed planning step (Algorithm 1, line 3). The constraint
relaxed planning step found a path to the goal, however it
required the robot to step up higher than it physically can.
The constraint resolution step (Algorithm 1, line 6) then
determined an object to resolve the constrained violation
at hand as well as a suitable target location, visualized in
Figure 2(c). The planner picked the box as it could support
the robot and had the correct height to allow the robot to
step on the box itself and consecutively on the platform.
The entire bottom surface of the box was required to be
placed on flat ground. The robot was then guided to pickup
the selected object (Algorithm 1, line 9 - 14). Once the robot
picked up the object (Figure 2(d)) and updated its and the
object’s configurations, the robot was guided to the target
location for the object and executed the appropriate drop
motion primitive (Algorithm 1, line 15 - 20), visualized
in Figure 2(e) - 2(f). The algorithm then looped and tried
again to find a path to the goal given the new environment
configuration. Figure 2(g) shows the output of the constraint
relaxed planning step. This time a path to the goal was
found without any constraint violations and the system

http://www.cc.gatech.edu/~mlevihn3/etap/
http://www.cc.gatech.edu/~mlevihn3/etap/


(a) Starting configuration (b) Constraint relaxed planning output (c) Constraint resolution output

(d) Configuration after pickup (e) Drop planning output (f) Drop motion execution

(g) Constraint relaxed planning output (h) Locomotion to goal configuration (i) Final configuration

Fig. 3. Proposed humanoid locomotion planning system: Bridge Example.

guided the robot to the goal configuration without any further
environment modifications (Figure 2(h) - 2(i)).

2) Bridge: Figure 3 as well as the accompanying video
show a second execution example. In this setup the robot was
tasked with reaching the other platform. The gap between
the platforms was too wide for the robot to step over. The
constraint relaxed planning steps determined that the robot
needs to cross the gap in order to reach the goal. The
planning system then guided the robot to pick up the board
and drop it across both platforms. The planner picked the
board as it was longer than the gap. Additionally, the board
only required 8cm on each side to be placed on flat ground
if dropped. This allowed the robot to drop it across both
platforms. After the robot verified that it could reach the goal
given the new environment configuration, the robot stepped
over the board and reached its goal configuration.

B. Simulation

We additionally performed simulated experiments over 10
different domains with varying sizes and difficulties. The
domains contained between 3 and 18 objects and the robot
typically needed to perform between 1 and 3 environment
modifications to reach its goal configuration. Figure 4 shows
an example domain that required the robot to perform 2

(a) Starting configuration (b) Final configuration

Fig. 4. Simulation visualisation. The robot is tasked with getting on top of
the platform. The platform is higher than the robot can step. Additionally
it can not step over gap. The robot placed the board over the gap and used
a box to step up the platform.

environment modifications to reach its goal.

The average computation time for the constraint relaxed
planning step was 30.36s when no path without constraint
violations existed and 3.06s otherwise (typically after the
robot modified the environment). We can see that if no direct
path to the goal existed this step took roughly 10x as long
as if a direct path existed. This is because we used a very
high cost for actions that violate robot constraints to avoid
unnecessary environment modifications. Consequently the
planner explored a larger space before using the constraint
violating actions. If no constraint violations were necessary,
the planner could explore the space more efficiently.



The average time for determining an object to resolve a
constraint violation was 2.82s. The planning times to the
grasp or drop location was 8.69s. Interestingly, the average
planning times for a path to a pickup or drop location were
almost 3x higher than for the constraint relaxed planning case
if no constraint violations were necessary despite the planner
behaving similar in these cases. This was caused by the fact
that our implementation required a substantially higher goal
configuration accuracy for pickup or drop location planning
than for the final goal configuration.

The average execution time for the robot including pickup
and drop motions was 84.52s, dominating the planning time.

VII. CONCLUSION

We presented the novel domain of Environment Aware Plan-
ning. This new domain gives a robot the option to manipulate
its environment in an effort to assist its locomotion. We
presented a planning system for it that was successfully
executed on a real robot. The proposed system enabled the
robot to reach a goal configuration outside of its reachable
space by building itself a stair step and a bridge. To the best
of our knowledge this is the first time a humanoid robot
showed such a behavior fully autonomously.

Future work will focus on techniques to allow the use of
multiple objects to resolve a single constraint violation. We
also plan to extend the proposed system’s applicability to a
variety of related scenarios. For example, the same methods
described here can be used to allow the robot to decide that
specific surface properties need to be modified. The robot
could decide to place a board over uneven surface to allow
itself to traverse the area more safely.

The kind of reasoning methods described in this work are
vital for a robot to operate autonomously in unstructured
environments such as disaster areas.
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