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Abstract In this paper we present the first decision theoretic planner for the prob-
lem of Navigation Among Movable Obstacles (NAMO). While efficient planners
for NAMO exist, they are challenging to implement in practice due to the inher-
ent uncertainty in both perception and control of real robots. Generalizing existing
NAMO planners to nondeterministic domains is particularly difficult due to the sen-
sitivity of MDP methods to task dimensionality. Our work addresses this challenge
by combining ideas from Hierarchical Reinforcement Learning with Monte Carlo
Tree Search, and results in an algorithm that can be used for fast online planning
in uncertain environments. We evaluate our algorithm in simulation, and provide
a theoretical argument for our results which suggest linear time complexity in the
number of obstacles for typical environments.

1 Introduction
There is great interest in robots that can safely navigate in common environments
such as homes and offices. However, the presence of obstacles poses a serious chal-
lenge. Interacting with a single piece of clutter found in typical environments is
difficult in itself, and the robot may need to manipulate many pieces of clutter to
clear a goal safely. Even given a map of the room, how does the robot decide which
path to take, or which object to move? This problem is referred to as Navigation
Among Movable Obstacles (NAMO) [17, 18, 21]. NAMO is an important research
area that is on the critical path to robot interaction in human environments.

There are two primary challenges in developing a practical algorithm for the
NAMO domain: the exponential size of the search space and the inevitable inaccu-
racies in perception as well as actuation that occur on physical systems.

To understand the NAMO search space, consider navigating in a room with mov-
able obstacles such as the ones depicted in Figure 1 and 2(a). If CR = (x,y) repre-
sents the configuration of the robot base with resolution n in each direction of mo-
tion, then the number of possible robot configurations is |CR|= O(n2). This is true
for each object as well, |Oi| = O(n2). The full space of possible environment con-
figurations is the product of these subspaces, CR×O1×O2× ...×ON , and therefore
has O(n2(N+1)) world states. In other words, the NAMO state-space is exponential
in the number of objects it contains, with a base quadratic in map resolution.
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Fig. 1 The table wheels are likely to be locked, making it impossible for the robot to move the
table. In contrast to deterministic planners, our proposed framework accounts for this probability.

Prior work on NAMO focused on handling the problem of dimensionality. It has
not yet addressed the underlying issue of uncertainty. In reality, robots have noisy
actuators and sensors, incomplete action models, and limited perceptual abilities.

To better understand why this might be a problem in an actual NAMO task,
consider the example in Figure 1. Perhaps the robot knows that the shortest path to
the goal involves moving the table, but it cannot see whether all the table wheels
are unlocked. How might it weigh the costs of moving the table versus the couch?
How would this answer be affected if it were given only a crude action model for
manipulating the couch? These sorts of reasoning patterns are not expressible within
the framework of deterministic search, without resorting to ad hoc heuristics.

Leveraging ideas from decision theory, we have achieved a novel representa-
tion that formally addresses uncertainty in NAMO - it is useful, efficient and the-
oretically well-defined. By casting the NAMO problem as a hierarchical Markov
Decision Process (MDP), we describe the first NAMO planner which can bias its
decisions at plan time in order to compute policies that are likely to succeed.

This work is organized as follows: Section 2 gives an overview of the challenges
of stochastic planning in NAMO, and our approach to addressing them. Following
related work in Section 3, Section 4 reviews the relevant ideas in stochastic planning,
which we combine to describe our algorithm in Section 5. Section 6 provides a
theoretical and empirical evaluation of our results, and Section 7 concludes with
final remarks.

2 Overview
Our general strategy to handling uncertainty in NAMO is to construct an “approx-
imate” MDP which closely resembles the real problem, but can be solved in real-
time. To achieve this, we draw on two techniques from Reinforcement Learning
literature. First, we hierarchically decompose the overall task to create shorter sub-
tasks, and second we apply an online Monte-Carlo technique to solve only the rele-
vant portion of the subtask.

The NAMO problem has two properties that make it a good candidate for hier-
archical planning. First, there is a natural abstraction from the low-level state space
into a small set of abstract states, which we call “free-space regions” to indicate that
the robot can move freely without collision. Second, there are a small number of im-
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Fig. 2 Concept visualization. The proposed framework defines a hierarchy of MDPs. The high
level MDP operates with abstract states representing free spaces and abstract actions reflecting the
notion of “creating an opening” by manipulating a specific obstacle.

plied abstract actions for maneuvering in this abstract state space. Since each free
space region is circumscribed by obstacles, we can define the abstract action “create
an opening to neighboring free-space” for each obstacle. These two properties are
the necessary components of an abstract MDP (Section 4), which is the basis for
our algorithm. Fig. 2(b) shows this representation for the environment visualized in
Fig. 2(a).

A hierarchical framework by itself, however, is insufficient for creating a tractable
NAMO MDP: even the individual manipulation tasks are too large to solve com-
pletely. For this reason we incorporate a complementary approach called Monte-
Carlo Tree Search (Section 4.3). MCTS is a technique for generating a policy for
one state at a time, with runtime that depends on the length of the plan rather than
the number of states. MCTS is well-suited for the individual manipulation tasks for
two reasons. First of all, the abstract MDP only requires a manipulation policy from
a few starting locations of the obstacle, which are known at plan-time. Second, since
the abstract MDP divided the NAMO problem into smaller manipulation tasks, the
overall policy length for any subtask is quite small. These two properties allow us to
substitute MCTS in place of value-iteration for our obstacle manipulation planner,
without compromising the hierarchical optimality for the overall algorithm.

3 Related Work
The proposed framework lies at the intersection of search-based algorithms for the
NAMO domain and stochastic planning algorithms for general domains with uncer-
tainty. This section provides an overview of these two topics and their relationship
to the proposed work.

3.1 NAMO Planning
Navigation and manipulation planning poses a significant computational challenge
even with complete environment information. Wilfong [23] first proved that deter-
ministic NAMO with an un-constrained number of obstacles is NP-hard. Demaine
[3] further showed that even the simplified version of this problem, in which only
unit square obstacles are considered, is also NP-hard.
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In [18], Stilman presented a planner that solved a subclass of NAMO problems
termed LP1 where disconnected components of free space could be connected in-
dependently by moving a single obstacle. The planner was able to solve the hard
problems presented in [2] and was successfully implemented on the humanoid robot
HRP-2 [17]. Our state space decomposition is mainly based on the concept of “free-
space regions” introduced in [18]. However, the free-space concept in [18] was sim-
ply a rhetorical device, and has never actually been used in a NAMO algorithm. The
work presented here takes direct advantage of the free-space representation. Sub-
sequent work presented a probabilistically complete algorithm for NAMO domains
[21]. However, all these methods solved NAMO assuming perfect knowledge of the
environment and deterministic action outcomes.

Wu [7] and Kakiuchi [9] introduced the first extensions to NAMO in Unknown
Environments. In [7] a planner was presented that could solve NAMO problems
given only partial obstacle information. However, that planner is not capable of
handling uncertainty, and instead assumes that everything within sensor range is
ground truth. Further, actions are again assumed to be deterministic. [9] presented
a system that executes NAMO in unknown environments on the humanoid robot
HRP-2. However, the authors took a reactive behavior-based approach, rather than
attempting full decision theoretic planning.

3.2 Decision Theoretic Planning
As discussed in the previous section, there are two basic forms of uncertainty that
may affect a NAMO planner: uncertainty in the action outcome, and uncertainty in
the world state. In the decision theory planning literature, these types of uncertainty
are typically modeled in different ways. The first is captured by a probabilistic ac-
tion model, and is the basis for the Markov Decision Process (MDP). The second
requires augmenting the MDP with a probabilistic observation model, into the so-
called Partially Observable MDPs (POMDP).

POMDPs have been applied separately to navigation planning by Koenig and
Pineau [12] [14] and grasping manipulation by Hsiao [6]. While both domains are
related to NAMO, they focus on the configuration space of a single robot or a single
object. In contrast, the NAMO domain requires the robot to reason about the full set
of objects in its workspace. Existing robot planners that use POMDPs are generally
restricted to low-dimensional configuration spaces. This constraint holds even when
applying the most recent approximate POMDP solvers such as point-based value
iteration [14] and belief compression [15].

Although explicit belief-space planning with the POMDP model offers some the-
oretical advantages, it is not strictly required in order to handle perceptual uncer-
tainty. In POMDPs, entropy from both the action and observation models ultimately
manifests as stochasticity in the feedback the agent gets from the environment. Thus,
it is always possible to collapse any POMDP into the simpler MDP rolling the ob-
servation uncertainty into the transition model. We take this approach in this paper
for the sake of computational efficiency.

Several techniques have been developed for extending the MDP model to hierar-
chical tasks. Among the most well known include the options framework [19], hier-
archies of abstract machines (HAM)[13], and the MAX-Q framework [4]. All three
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of these approaches rely on a generalization of the MDP to incorporate non-atomic,
or “semi-markov” actions. The resulting model is referred to as a semi-markov de-
cision process, or SMDP [5].

The primary difference between these approaches is whether they involve sim-
plifying or augmenting the original MDP. The goal of the options framework is to
introduce abstract actions without compromising the finer-grained planning of the
original MDP. Therefore options-planning does not offer any representational ab-
straction: all planning is done in the state space of the original MDP. In HAM, the
system designer specifies a hierarchical collection of state machines for solving sub-
tasks. This state machine presents an abstract interface for the high-level task, which
can again be solved as an SMDP. The drawback of these approaches which makes
them inappropriate for NAMO is that the resulting SMDPs are either too low-level
(options), or too high-level (HAM).

The third approach, MAX-Q, strikes a balance between Options and HAM. It is
well-suited for NAMO because it does not require pre-defined subtask policies, but
still utilizes an abstract planning representation. However, MAX-Q still assumes
that each subtask is solvable using standard dynamic programming methods [4].
These algorithms are based on the theoretical results for the SMDP, which scales
at best linearly in the size of the (non-abstract) state space [8]. This prohibits a
direct application of the MAX-Q framework to the NAMO domain, and is the main
technical challenge of this paper.

This challenge is addressed using an alternative to dynamic programming for
solving MDPs, referred to as “sparse sampling” or “monte-carlo tree search” (MCTS).
The MCTS literature describes a family of algorithms which were introduced to pro-
vide MDP solvers which scale independently of the size of state space [10]. How-
ever, MCTS remains exponential in the depth of its search tree, which for NAMO
can often require tens or hundreds of primitive actions. Several heuristics have been
developed for MCTS, including UCT [11] and FSSS [22], which are significantly
more sample efficient than vanilla MCTS. While these algorithms are good candi-
dates for a subtask planner, they can not solve the overall NAMO problem due to
the large depth, branching factor, and sparsity of rewards in the core MDP.

4 Preliminaries
This section highlights the concepts underlying our approach. Following the defini-
tion of an MDP, both MAX-Q and MCTS will be explained. While substantially dif-
ferent, MAX-Q and MCTS are techniques developed for handling large state spaces
in an MDP. To our knowledge, these techniques have never been combined. Con-
sequently this section will treat them separately while the following sections will
demonstrate how they can be efficiently combined to achieve a practical planner.

4.1 Markov Decision Processes
The Markov Decision Process (MDP) is a model for stochastic planning, and the
foundation of our algorithm. We define an MDP M = (S,A,T a

ss′ ,R
a
s ,γ) for a finite

set of states S, a finite set of actions A, a transition model T a
ss′ = P(s′|s,a) specifying

the probability of reaching state s′ by taking action a in state s, a reward model
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Ra
s = r(s,a) specifying the immediate reward received when taking action a in state

s, and the discount factor 0≤ γ < 1.
The standard technique for solving MDPs is Value Iteration [16], which is used

to find the optimal policy π∗ : f (s)→ a which maps states to actions in order to
maximize the expected long-term reward, or value V (s) for all states s ∈ S. Generic
value iteration (VI) has a polynomial runtime in the number of states (with fixed
error ε).

4.2 MAX-Q Value Function Decomposition
The MAX-Q framework is a technique within the reinforcement learning literature
which describes how a value function for an MDP may be decomposed according to
a task hierarchy. To understand this idea, consider a two-level hierarchy composed
of a high-level policy π0, defined over a set of subtask policies πi, i ∈ {1,n}, which
are in turn defined over primitive actions. That is, π0 : f (s)→ πi, and πi : f (s)→ a.

The key insight behind MAX-Q is that the value functions for the subtask policies
Vπi(s) contain all the information needed to represent the value function of the parent
policy Vπ0(s). This is true because, according to the Bellman equation for SMDPs,
the value of executing subtask πi in state s is simply the sum of the (discounted)
reward accumulated by πi itself, and the future expected reward of whichever state
πi terminates in:

Q(s,πi) = R(s,πi)+∑
s′,τ

P(s′,τ|s,πi)γ
τV (s′) (1)

where γτ ensures that the value of s′ is appropriately discounted according to the
time τ that πi took to terminate [1].

The first term in this expression, R(s,πi), is precisely the information encoded by
Vπi(s):

R(s,πi) =Vπi(s) = Eπi

[
τ

∑
t=1

γ
tR(s,a)

]
(2)

Therefore, planning in the high-level task simply involves using the values of the
subtasks as immediate rewards for their execution in the high-level policy.

In addition to an analysis of compositional value functions, the full MAX-Q
framework also describes several model-free learning algorithms. In this paper,
however, we are instead interested in model-based planning, since we assume the
robot has knowledge of the effects of its actions. Our algorithm therefore differs
in some important details, but shares the primary data structure (a hierarchical Q-
function) and general format of “MAX-QQ” [4].

4.2.1 Types of optimality
So far, we have described a bottom-up representation of value functions, in which
values of subtasks are “projected up” to parent tasks. This approach provides space
efficiency, as well as the opportunity to divide and conquer: each subtask can be
learned separately and combined to learn the parent task. Dietterich [4] refers to the
class of policies which can be represented by such a model as recursively optimal,
meaning all policies are optimal given optimal solutions to their subtasks.
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The drawback to this approach, which makes it inappropriate for the NAMO do-
main, is that subtasks are learned without knowing their context in the overall plan.
This is a problem, for example, if moving two obstacles provides the same reward,
but only one of them opens a path to the goal. In general, tasks with sparse rewards
tend to require either additional shaping rewards for the subtasks, or a solution strat-
egy that includes top-down information [1].

We take the top-down approach by using the value of the target free-space region
as a reward for the manipulation policy that clears the appropriate obstacle. This is
equivalent to Dietterich’s solution for the model-free case, in which the completion
functions (the right-most term of Eq. 1) are treated as subtask terminal state rewards
[4]. Policies that are learned in this fashion are referred to as hierarchically opti-
mal, meaning that the overall policy is optimal given the constraints of the imposed
hierarchy [4].

4.3 Monte-Carlo Tree Search
MCTS was invented as a way of allowing near-optimal planning for MDPs with
large or infinite state spaces. The main idea is to relax the goal of computing a
full policy, and instead focus on computing the optimal policy for a single state –
the state the agent is in. In their original work on sparse sampling, Kearns et al.
showed that it was possible to obtain ε-optimal Q-value estimates for the current
state from a set of sampled transitions, and that the number of samples C per state
was independent of |S| [10].

MCTS works by building a search tree from the current state, selecting actions
according to some search policy πs, and sampling transitions from the transition
model T a

ss′ for each action. This tree generates a set of sampled rewards, which can
be backed up to the root node to obtain a Q estimate according to:

Qd
SS′(s,a) = R(s,a)+ γ ∑

s′
P(s′|s,a)max

a′
Qd−1

SS′ (s
′,a′) (3)

Qd
SS′(s,a) refers to the expected value of taking action a in state s, and following

the optimal policy for d− 1 subsequent steps (so Q1
SS′(s,a) = R(s,a)). Equation 3

defines a simple recursion for using forward simulation to select actions, despite
uncertainty in the action model.

4.3.1 The effective horizon
There is one additional result from the MCTS literature, regarding search depth,
which we exploit in our hierarchical NAMO algorithm. Kearns et al. proved in [10]
that MCTS could achieve ε-optimality with an O((|A|C)H) running time, where H
is the effective horizon of the problem. Based on the fact that rewards in the distant
future have little effect on the Q-values of the current state, this proof bounds H
according to ε and Rmax (the maximum possible reward):

H = dlogγ(
ε(1− γ)2

4Vmax
)e,Vmax = Rmax/(1− γ) (4)
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Equation 4 states that the effective horizon increases with the value of the max-
imum possible reward that can be achieved. As we show in Section 5, this relation
can be exploited in a hierarchical setting to have the MCTS manipulation planners
spend time in proportion to the value of their target free-space region.

Neither MAX-Q nor MCTS alone are appropriate for the NAMO domain. The
applicability of MAX-Q is hindered by requiring an exact solution for each sub-
task. MCTS in turn is limited by the branching factor and sparsity of rewards in the
NAMO domain. In the next section we present a new algorithm that solves these
shortcomings by combining the two approaches.

5 Algorithm
In this section we outline how to construct an MDP for the NAMO problem, and
how to solve it by combining the tools from MAX-Q and MCTS described above.
Recall that a standard MDP has an action model associated with each state. For the
NAMO domain, this implies a displacement model for each object, which depends
on the action a being executed, and the target obstacle o:

δx,δy∼ P(δx,δy|a,o) (5)

In our case, however, we represent action models for a discrete set C of object cate-
gories. This allows us to incorporate observation uncertainty. Now instead of know-
ing the action model for an obstacle with certainty, the robot has a belief distribution
P(c|o) over categories of action models. The actual displacement model is conse-
quently the marginal over the categories:

δx,δy∼∑
c

P(δx,δy|a,c)P(c|o) (6)

P(c|o) can be used to encode any uncertainty the robot might have about the cat-
egory of object it is manipulating. For example, P(cut |o) could be the posterior
probability of obstacle o being an unlocked table cut given some sensor data D:
P(cut |D) ∝ P(D|cut)P(cut).

Our algorithm (Algorithm 1), therefore takes the following input:

1. The set O of obstacles present in the workspace
2. Distributions P(ci|o j) representing the probability of obstacle o j belonging to

category ci
3. Motion models indicating 2D object displacements,

P(δx,δy|a1
ll ,c1) . . .P(δx,δy|ak

ll ,cm), indexed by action and object category
4. Cgoal The robot’s goal configuration in the workspace

It outputs:

1. A high-level policy π0 indicating which obstacle to move for each free space
2. A set of low-level partial policies Π1 indicating the manipulation actions to

execute for each obstacle
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5.1 The NAMO MDP
The proposed NAMO MDP has a two-level hierarchy, with navigation between re-
gions as the high-level task, and object manipulation as the low-level task. Here we
define both MDPs, and their hierarchical semantics. Recall that an MDP is defined
as M = (S,A,T a

ss′ ,R
a
s ,γ), which leaves four properties to define at each level of the

hierarchy (γ can be viewed as a parameter of the algorithm).
States and Actions: The fundamental state space in the NAMO problem is the

set of possible configurations CW of the robot and environment. We define the low-
level MDP Mll in terms of these states Sll , and a set of primitive actions All for
manipulating obstacles on the map. For simplicity, we used axis-aligned manipula-
tions as action primitives in our simulation, but in practice these would typically be
replaced with a more appropriate choice for physical systems, such as those intro-
duced in [18].

For the high-level MDP Mhl , we define the state space Shl to be the set of free-
space regions implied by the starting obstacle configuration. In our implementation
we identify these regions by performing seeded wavefront expansions on CW to
determine disjoint regions. During this operation we also save the list of obstacles
bounding each free space region into an “adjacency list” Lr, since these represent
the possible manipulation targets for that state. The action space Ahl is the union
of all possible manipulation sub-tasks for each region, where sub-task ai jk

hl = πi jk
means “open a path from state i to state j by manipulating obstacle k”. The set of
possible obstacles k for each starting state i are obtained from the adjacency list.

Transitions and Rewards: Following the discussion of MAXQ in Section 4.2.1,
the rewards in Mll and Mhl are defined to reflect their hierarchical relationship. Val-
ues for Rhl represent expectations over the reward accumulated by subtasks in Ahl
(Eq. 2), and individual subtasks ai receive the value of their final state in Mhl as a
terminal reward (Section 4.2.1). This should be intuitive, since the high-level pol-
icy needs to know the actual outcome of executing each possible subtask, and each
subtask needs to know its context in the high-level policy in order to know how
important different obstacles are. Initially, only the state s ∈ Shl containing the goal
configuration has a reward, set according to the robot’s utility function.

The transition probabilities in Mhl directly represent the expected outcome of
executing a subtask πi jk in some state si

hl . For example, the manipulation sub-task
πi jk terminates in state j if it successfully opens a path from i to j, and terminates
in state i otherwise. Therefore, the transition probability P(s′ = j|s = i,πi jk) is 1 if
and only if πi jk terminates in j. In addition, this suggests that transition model Thl
is sparse: the probabilities are automatically zero for all states that do not share an
obstacle in their adjacency lists. Finally, the transition model for the low-level MDP
Tll is sampled directly from the displacement model (Eq. 6), encoding the domain
uncertainty. This completes the construction of the NAMO MDP.

Note that this construction is an instance of what Dietterich refers to as a funnel
abstraction [4]: the value all possible robot configurations (positions) within the
target free space get mapped to a single value: the value of that region. This is the
basic abstraction from which the hierarchical MDP obtains its savings.



10 Martin Levihn, Jonathan Scholz and Mike Stilman

Input: O: Obstacles, P(c1|o1) . . .P(cm|on): Distributions over categories,
P(δx,δy|a1

ll ,c1) . . .P(δx,δy|ap
ll ,cm): motion models estimates for action primitives

and categories, Cgoal : Goal Configuration
Output: π0: High Level Policy, Π1: Set of Low Level Policies

1 (F,Lr)← get freespaces( O );
2 Mhl(Shl ,Ahl ,Thl ,Rhl)← (F,{}, [0], [0]);
3 π0← /0; Π1← /0;
// determine high level MDP definition:

4 foreach fi ∈ F do
5 if fi contains Cgoal then
6 ∀a R[ fi,a]⇐ utility of reaching the goal;
7 end
8 foreach ok ∈Lr adjacent to fi do
9 foreach f j ∈ F do

10 if ok adjacent to f j then
11 Ahl ⇐ Ahl ∪{ai jk

hl } ;
12 T [si

hl ,s
j
hl ,a

i jk
hl ]⇐ 0.5; // connectivity; actual

uncertainty encoded at lower level, adds to 1
due to self transition for failure case

13 end
14 end
15 end
16 end

// run value iteration:
17 while error not within ε do
18 foreach si

hl ∈ Shl do
19 v⇐ 0;
20 foreach ai jk

hl ∈ Ahl do
21 h⇐ dlogγ (

(ε(1−γ)2)/4
s j
hl .v

e);// dynamic horizon

22 (qk,πi jk)⇐MCTS(ai jk
hl ,h,∑c P(δx,δy|a1

ll ,c)P(c|ok), . . . ,∑c P(δx,δy|ap
ll ,c)P(c|ok);

// ai jk
hl provides necessary information about

obstacle and free-spaces to connect
23 if qk > v then
24 v⇐ qk;
25 π0(si

hl)⇐ ai jk
hl ; Πl(ok)⇐ πi jk;

26 end
27 end
28 si

hl .v⇐ v;
29 end
30 end
31 return πh,Πl ;
32

Algorithm 1: Proposed framework.

5.2 Solution
Section 5.1 described a two-level hierarchy of MDPs defined in terms of each other:
the rewards for Mll were obtained from the values of states in Mhl , and the values of
states in Mhl were defined based on outcomes of subtasks in Mll . With this formula-
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tion, values in both Mll and Mhl reflect the true transition probabilities and rewards
for manipulation actions.

This suggests an iterative scheme in which we alternate between updates to the
high-level policy π0 given the current values for subtasks Vπi jk , and updates to the
individual subtasks πi jk given the values in Vπ0 . However, computing these values
requires actually solving the associated MDPs, which was shown to be intractable
for Mll in Section 1, since Sll = CW .

Fortunately, sparse-sampling planners provide a way of obtaining approximate
solutions to Mll , and make assumptions which are compatible with our hierarchical
approach (Section 4.3). Therefore, our actual algorithm performs the same alternat-
ing policy-iteration scheme described above, but with the substitution of an MCTS
planner in place of value-iteration for the manipulation MDPs. These MCTS plan-
ners compute Q-values in CW ×All , and sample transitions from the displacement
model defined in Eq. 6. Sampling terminates when an opening is achieved or the
maximum search depth, defined by the horizon H (Eq. 4), is reached. For a general
MCTS planner, H is defined as a function of Rmax. In combination with a hierar-
chical policy iteration, however, it can be used to explicitly force the computation
effort for each subtask planner to scale in proportion to its estimated utility. This is
achieved using a dynamic horizon. Dynamic horizon recomputes the H-value, Eq. 4,
of each MCTS planner separately based on the value of the target state in Shl . The
overall effect of this operation is that πi does not waste time sampling actions past
the point where rewards can significantly affect the Q-value of the subtask.

The following section will argue the usefulness of this complete framework.

6 Evaluation
This section provides theoretical and empirical evidence that our algorithm has a
run-time which is linear in the number of obstacles, for non-degenerate environ-
ments.

6.1 Theoretical Analysis
The following analysis is based on relating the sparsity of the free-space transition
matrix Thl to the adjacency graph GA over free space regions. The sparsity of Thl
directly controls the complexity of value iteration.

Definition 1. The adjacency graph GA = (V,E) is defined to have vertices vi ∈
V which uniquely represent free space regions Fi, and edges e(i, j) ∈ E con-
necting adjacent free space regions. That is, e(i, j) ∈ E ⇔ ad jacent(Fi,Fj), with
ad jacent(Fi,Fj) = true iff Fi and Fj are disconnected through a single obstacle.

Figures 3 and 5 show examples of workspaces and their associated adjacency
graphs. A graph G is planar if it can be drawn on the plane with no edges cross-
ing except at common vertices. Kurarowski’s theorem states that a graph is planar if
and only if it does not contain a subgraph that is a subdivision of K5 or K3,3, where
K5 denotes a complete graph with five vertices, and K3,3 denotes a complete bipar-
tite graph on six vertices [20]. Note that GA in typical environments will fulfill this
definition. The contrary would require that either:
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Fig. 3 Example of GA not being planar.

a) A set of five free spaces are all adjacent to each other, separated by only a single
obstacle.

b) A set of three free spaces are all adjacent to a disjoint set of three free spaces,
but not adjacent to each other

Figure 3 shows one of these degenerate cases.
Further, recall that by definition of Thl , the only next-states with non-zero transi-

tion probability from state shl are states representing free spaces adjacent to shl or
shl itself (failure case). This gives rise to the following lemma:

Lemma 1. Thl has on average a constant number of next-states with non-zero prob-
ability if GA is planar.

Proof. First, it is trivially true that on average, rows of Thl contain a constant num-
ber of self-transitions: |Shl |

|Shl |
= 1. The remaining non-zero entries in Thl are a direct

mapping of GA = (V,E). The number of next-states with non-zero probability for
shl is equal to the degree d of the associated vertex in GA. This suggests that the av-
erage number of next-states with non-zero probability in Thl is equal to the average
degree of GA.

We now bound the average degree of GA to show that the number of non-self
transitions in Thl is at most 6. First, recall Euler’s formula, which places a constraint
on the number of possible edges e, vertices v, and faces f in a planar graph:

v− e+ f = 2 (7)

Now consider the set of all possible “edge-face pairs” p ∈ P, (for v > 2) where an
edge is added to P for each face in which it appears. Observe that since an edge can
contribute to at most 2 faces, we have |P| ≤ 2e. In addition, each face must have at
least 3 edges, implying |P| ≥ 3 f . Plugging this into Eq. 7, we have e ≤ 3v−6. We
can now compute the average degree davg of GA:

davg =
dtotal

#vertices
=

∑
v
i=1 di

v
=

2e
v
≤ 2(3v−6)

v
= 6− 12

v
< 6 (8)

Consequently, Thl has on average at most 6 next-states with non-zero probability. �
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Fig. 4 Obtained average computation times as a function of the number of obstacles. The graph
suggest linear complexity in the number of obstacles.

Lemma 2. The run-time of the proposed framework is linear in the number of ob-
stacles |O| if the adjacency graph GA is planar.

Proof. First, consider Mhl . The number of states |Shl | is linear in |O| (worst case
2|O| for infinite obstacles intersecting at a star pattern). Value iteration is performed
over Mhl . Since the error ε is a free parameter, the complexity of value iteration
is typically separated into the cost-per-iteration and the expected number of iter-
ations. The number of iterations required by VI to achieve an ε-error bound is
N = dlog(2Rmax/ε(1−γ))/log(1−γ)e [16], which is independent of Shl . The inner
loop of value iteration is quadratic in |S| the worst case, due to the need to compute
an expectation over the entire state-space in each Bellman update [8]. However,
since Thl has on average a constant number of next-states with non-zero probability
for planar GA (Lemma 1), the expected per-iteration cost of value iteration reduces
to 6×|Shl |, yielding an overall complexity for Mhl of O(N|Shl |).

Finally, each action evaluation in Mhl requires MCTS sampling. As discussed in
Section 4, the complexity of MCTS is independent of the state space size [10]. It is
consequently constant over |O|, which implies that the overall algorithm is linear in
|O|. �

6.2 Empirical Analysis
To evaluate the proposed framework we have analyzed it using the implementation
discussed in Section 5. All the experiments were run on a Intel Core i7 (2.1GHz)
PC.

6.2.1 Runtime
We have evaluated the framework on 1000 randomly generated NAMO environ-
ments. The size of the map was sampled uniformly to be between 250x250 and
400x400 grid cells. The number of obstacles for each map was uniformly sampled
to be between 7 and 24, each obstacle in turn having random position, shape (rect-
angular or ellipsoid) and size (minimum 15x15 cells, maximum 65x65 cells occupa-
tion). Motion models P(δx,δy|all ,c) were represented using Gaussians with their
mean and standard deviation randomly varying for different categories. The cate-
gory estimates P(c|o) for each object were randomly assigned with the constraint of
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Fig. 5 Example environment. V is the states value and A denotes the action to execute. E.g. the
free space containing the robot has a value of 17.03 and the best action to execute is to manipulate
obstacle O3 to gain access to free space F6. Low level policies visualized as a vector field. Static
obstacles visualized in gray.

summing to 1 for each obstacle. The generated maps had an average of more than
70% cells occupied.

Figure 4 summarizes the computation time as a function of the number of obsta-
cles. Pre-computations include the generation of the configuration space represen-
tation and determination of free space regions. While we show computation time
as a function of number of obstacles, note that there are many other contributing
factors, such as the particular configuration and number of free spaces, the com-
plexity of planning to create openings etc. Figure 4 averages over these factors, and
consequently resulted in a high standard deviation of up to 11.1s.

The empirical results are consistent with the theoretical analysis of our algorithm,
and support applicability of the approach to practical environments.

6.2.2 Example
Fig. 5 shows an example environment and the solution obtained by our proposed
framework. The high level policy is indicated in text, and the low level policy is
visualized as a vector field for each obstacle. Only low level policies corresponding
to obstacles that are chosen by the high level policy are visualized to preserve a clear
view.

6.3 Online Execution
If the robot successfully executes a low-level policy in its workspace, it, in general,
has merged two free spaces rather than transitioned between them. This alters the
state-space of Mhl . While future work will investigate the applicability of policy
iteration [16] to take advantage of the locality of the change, we address this by re-
executing the proposed algorithm after each object manipulation. Given the linear
runtime of the algorithm, this has not presented a significant disadvantage. However,
as the algorithm does not consider all possible future free space configurations, the
Q-values for a specific Mhl do not represent the true long term expected reward of
those regions, but rather an approximation based on the current world configuration.
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In general, this approximation is sound as long as actions are reversible. Future work
will examine the expected loss and convergence properties under this assumption.

7 Conclusion
We have presented the first decision theoretic planner for the problem of Naviga-
tion Among Movable Obstacles. This planner is able to overcome the exponential
complexity of the NAMO domain, while incorporating uncertainty, by employing
a novel combination of ideas from sparse-sampling and hierarchical reinforcement
learning.

Our algorithm can be viewed from the top-down as a value-iteration scheme
in the free-space representation of the NAMO problem. From this perspective, the
primary difference with classical value iteration is that the Bellman updates issue
calls to a low-level MCTS planner for evaluating the action rewards, rather than
querying an atomic reward function. In this fashion, values spread through the free-
space MDP as they typically would in value iteration. From a bottom-up perspective,
we can also view the role of the free-space MDP as a data structure for learning a
shaping reward for manipulation subtasks. Thus, the high-level MDP over free space
serves to constrain the set of possible actions (and hence the branching factor), as
well as the depth of manipulation plans. We expect that this new perspective on
the NAMO problem will generate additional insight into robot planning in human
environments.
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