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Abstract

This paper presents a novel algorithm: Verfied Partial
Object Detector (VPOD) for accurate detection of par-
tially occluded objects such as furniture in 3D point clouds.
VPOD is implemented and validated on real sensor data
obtained by our robot. It extends Viewpoint Feature His-
tograms (VFH), which classify unoccluded objects, to also
classify partially occluded objects such as furniture that
might be seen in typical office environments. To achieve this
result, VPOD employs two strategies. First, object models
are segmented and the object database is extended to in-
clude partial models. Second, once a matching partial ob-
ject is detected, the complete object model is aligned back
into the scene and verified for consistency with the point
cloud data. Overall, our approach increases the number of
objects found and substantially reduces false positives due
to the verification process.

1. Introduction
The ability to reliably detect and classify objects is cru-

cial to the success of robots in realisitic, human environ-
ments. Knowledge about the existence and position of ob-
jects within the robot’s vicinity has many practical applica-
tions in robotics. For instance, semantic mapping, the cre-
ation of maps that include meaning, could be enhanced by
detecting meaningful objects, such as furniture. A room
with a table and many chairs is likely to be the dinning
room. In addition, knowledge about objects is crucial for
robots to understand natural language commands such as
”put the mug on the table”.

Moreover, this work is strongly motivated by recent ad-
vances in the field of Navigation Among Movable Obsta-
cles (NAMO) [11]. In NAMO, the robot attempts to reach
a fixed goal position in a reconfigurable environment. The
planner presented in [11] is capable of dealing with partial
world knowledge and incrementally adding new informa-
tion to the world model once it is perceived. However, in
order to transfer the planner to a physical system, the robot

(a) Example of a detected chair
model, which is colored in green.

(b) Example of a detected table
model, which is colored in blue.

Figure 1. Example of correctly classified furniture. The chair is
correctly detected despite the fact that only the top part of the chair
is actually visible in the scan. Similarly, the table is detected de-
spite the fact that it is partially occluded.

must be able to detect movable objects based on real sen-
sory information, such as 3D point clouds obtained by a
laser range finder.

All of these examples require the robot to perceive and
reason about a human environment. Conditions in such en-
vironments are not ideal for a robot: objects are in different
configurations at different times and are often partially oc-
cluded by other objects, walls or people. Any algorithm try-
ing to reliably detect objects in human environments must
therefore not just be able to handle arbitrary orientations of
the objects but also occlusions.

Previous work has shown success in classifying mostly
unoccluded objects in different orientations but does not
perform well with the large occlusions typical for human
environments. This paper presents the Verfied Partial Ob-
ject Detector (VPOD), an algorithm that is capable of de-
tecting objects despite more than 50% occlusion. VPOD
segments a point cloud of a scene into clusters by point
distances and classifies each resulting cluster. This clas-
sification is based on a two step approach. The first step
builds upon Viewpoint Feature Histograms (VFH) [9], a de-
scriptor for 3D point cloud data that encodes geometry and
viewpoint. The VFH of the query object is computed and
compared to VFHs in a database composed of both com-



plete object models and auto-generated partial object mod-
els. The auto-generated partial models allow for a classifi-
cation of parts of an object, whose detection in turn yield
a hypothesis of the existence of the complete objects in the
point could. For example, detecting the back of a chair in
the point cloud could indicate the existence of a chair with
the sitting surface occluded by other objects.

However, the existence of partial objects in the database
also increases the risk of false positives. For example, a sim-
ple piece of board could be matched to the back of a chair,
leading to a hypothesis of a chair. Our algorithm therefore
introduces a second step to verify each hypothesis. The ver-
ification step maps a complete model of the object asso-
ciated with the candidate match into the point cloud of the
scene. Points of the complete model that would be occluded
by objects in the point cloud are then detected and elimi-
nated from the model. The remaining points are checked
for matching points in the point cloud. The proportion of
matching, unoccluded points yields the final classification
score. This steps ensures that matches are consistent with
our expectation given the context of the world and the cur-
rent viewpoint.

The remainder of this paper will focus on the detection of
furniture as a use case and is organized as follows: Section 2
discusses related work and Section 3 summarizes the basic
structure of vanilla VFHs. A detailed analysis of our ap-
proach is provided in Section 4 and experimental results are
demonstrated in Section 5. Concluding remarks are given
in Section 6.

2. Related Work
The detection of objects in 3D laser data has been stud-

ied intensively in various research fields. As such, we are
only addressing the work most relevant to partial object and
furniture detection in human environments.

In [8] Rusu et al. present a system for the acquisition of
hybrid Semantic 3D Object Maps for indoor household en-
vironments based on 3D point cloud data. The authors use
a two step approach for detecting kitchen furniture based
on the detection of horizontal and vertical planes as well as
knobs.

In [3] the authors describe a mapping system acquir-
ing 3D object models for indoor environments. The au-
thors present a system for segmenting and geometrically
reconstructing cabinets, tables, drawers and shelves based
on multiple scans of the objects. Tables, the most relevant
part to our work, are detected by finding horizontal surfaces
within a given height range. This does not allow for distin-
guishing between, for example, tables and shelves.

Holz et al. are using 3D Time-of-Flight cameras in
[4] for semantic scene analysis. The authors are using an
MSAC-based approach and surface information in a point’s
local neighborhood to detect table tops. This is done by as-

suming that a table top point has a surface normal nearly
parallel to the z-axis and that the local surface is smooth.
MSAC is used to fit planar surface models into the table
point set. This approach yields the same limitations as [3].

Johnson et al. presents in [5] a shape-based object recog-
nition system based on matching Spin Images. Spin Images
however require a high resolution image, and as such are
difficult to use in 3D point clouds obtained by a laser.

Marton et al. incorporate in [6] 3D laser scans and 2D
vision data for object classification. They use the Radius-
based Surface Descriptor (RSD) on 3D data, extract the re-
gion of interest into a camera image, and compute a 2D
SURF vector for each patch. The final classification is per-
formed through a SVM. However, it remains unclear how
this work can be extended to work with furniture, which
usually lacks texture. In addition, partial occlusions would
be difficult to handle by this approach.

Steder et al. [10] demonstrated the detection of chairs
and other objects in 3D point clouds using point features
from range images. The authors use euclidean distance in a
vector space spanned by Harris feature vectors to find can-
didates. GOODSAC is used to find a model transformation
and false positives are rejected based on a scoring function
using scaled range images. Steder also presented the normal
aligned radial features (NARF) in [1]. Interest points are de-
tected on stable surface areas with significant local changes.
A descriptor is then computed by overlaying a star pattern
on the range image generated by looking at the interest point
along the estimated normal for this point. The authors also
describe the potential of matching the feature descriptors as
an object recognition approach. However, we experimented
with NARF and found that the descriptor is only of lim-
ited use in object recognition due to a lack of local texture
in range images and the loss of valuable orientation infor-
mation during normal alignment. E.g. a horizontal surface
becomes indistinguishable from a vertical one.

Mozos et al. [7] demonstrate a method of categorizing
partially occluded objects from object parts learned from
segmented 3D models, which are first segmented based on
the object’s structure. The database of segmented parts is
used to suggest categorizations from a scene. The can-
didates are combined through Hough voting and verified
through model fitting. As this approach segments based
on the object’s structure, the segmented parts do not corre-
spond exactly with occlusions caused in real scenes, which
is a property of the occluding object and the scene, not the
occluded object. It remains unclear whether [7] is sensitive
to partial occlusion of the segmented parts. Our approach
segments objects based on common occlusions and relies
instead on real 3D scans of objects, which can be generated
by the robot, and not prebuilt models.

Viewpoint Feature Histograms as presented by Rusu et
al. [9] are encoding geometry as well as viewpoint infor-
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Figure 2. Example VFHs for a partial model and its associated
complete model. The individual components of a VFH can be
found in [9].

mation into a descriptor. The authors demonstrate the ef-
fectiveness of the descriptor on a dataset consisting of more
than 60 unoccluded kitchenware objects. The first part of
VPOD builds upon this work to support partial occlusion
and is presented in the following section.

3. Viewpoint Feature Histrogram
Viewpoint Feature Histograms are histograms describing

the geometrical relationship between all points in the scan
of an object. Rusu et al. [9] show that VFHs can discrim-
inate according to the structure of the entire object, if the
entire object is visible.

However the VFH is sensitive to partial occlusions. Con-
sider the scan visualized in Fig. 1(a) in which only the top
part of the chair is visible. As the top part of the chair is
roughly just a flat surface, the points have an entirely differ-
ent geometrical relationship to each other than all the points
for an unoccluded chair. This results in different VFHs for
the complete and partial chair, as shown in Fig. 2.

The consequence is that partially occluded objects are
not reliably detectable with VFH or any other method that
works with the properties of the complete object model
alone.

4. Algorithm
We now outline our approach extending on the use of

VFH.

4.1. Approach

The key insight is that fragments of a partially occluded
object can be treated and classified as objects themselves.
VPOD extends the VFH database to include partial models
auto-generated by occluding portions of complete models.
The partial model generation process is designed to gener-
ate typical occlusions occurring in the world. For human
environments, we assume that the objects are usually oc-
cluded from one side (e.g partially behind a wall) or the bot-
tom (e.g. a chair underneath a table). Our algorithm there-
fore generates partial models out of every complete model

Figure 3. Hierarchy of complete models and auto generated partial
models.

by successively removing points from each side of the ob-
ject and from the bottom independently. This is done for a
step size s and continued until a threshold t is reached for
the remaining object size on the side currently affected by
the removal. Fig. 3 visualizes an example of this process.
Other types of common occlusions can easily be added by
generating additional partial models. The resulting partial
models are included in the VFH database with the complete
models.

Including partial models in the VFH database increases
the likelihood that a partially occluded object will be
matched. For example, it is now possible to match the back
of a chair against models in the database that represent just
the back of a chair. But this also increases the likelihood
of false positives, as the partial models are less distinctive
(e.g. the back of a chair is mostly flat). Extending the
database to artificially created objects, especially pieces of
objects, allows for matches of arbitrary objects. To compen-
sate for this, the algorithm includes a verification step that
verifies the candidate classifications against the actual scene
in which the point cloud was captured (called the “world”
from here on).

The intuition behind this verification step is that if the
detected part is indeed a proxy for the actual object in the
scene, we can compute our expected observation for the
complete object. This can be done by projecting the com-
plete object model on the detected part and reasoning about
expected occlusions, which can be determined by a sim-
ple line-of-sight test against the scan of the world. The ob-
tained expected observation can then be matched with the
actual observation. For example, if we matched the back
of a chair against an object in the world, then the expected
observation of the complete chair model projected into the
scan has to be consistent with the world.
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Figure 4. Workflow. Steps independent of the actual world are
colored in orange while world dependent steps are colored in blue.

We have implemented this intuition through the follow-
ing steps:

1. the complete model associated with the detected part
is mapped into the world (section 4.3)

2. the portions of the complete model expected to be oc-
cluded based on information provided by the world are
removed from the model (section 4.4)

3. the remaining model points are checked for matches in
the world (section 4.5)

4. based on this score, the classification is rejected or ver-
ified (section 4.5)

Fig. 4 summaries the workflow as discussed in detail in
the following.

4.2. Clustering

First, the point clouds collected by the robot are seg-
mented into query clusters. We filter the point cloud to
remove outlying points that are not near any surface or ob-
ject. This type of noise is especially common on occlusion
boundaries with laser range finders. The remaining points
are then downsampled to reduce computation time. A grid
size of 1 cm was used for the downsampling in this work.
Because the sensor’s height relative to the ground is known,
we can easily remove the ground plane by discarding any

points below a given z-coordinate. With the ground plane
removed, we can then cluster the remaining points. In this
work, we require a minimum of 100 points per cluster, and
allow 10cm distance between points within a cluster. Ob-
jects such as chairs, tables, desks, walls of the room and
others are returned as clusters. As this work uses furniture
as a use case, we filtered clusters out that cannot represent
furniture or parts of furniture. Filtering was done based on
bounding box size and position to discard objects that are
much too large, much too small, or not near the ground.

4.3. Alignment

Next, VPOD computes the transformation matrix T that
transforms the centroid of each candidate partial model Mp

to the centroid of the cluster C it was matched against.
Tcenter is then apply to Mp. This yields the transformed
partial model M ′p = TcenterMp. However, models in a
database usually have limited angular resolution, e.g we
might have a model of a chair rotated at 10◦ and at 20◦

in the database. The transformation might not align Mp

and C optimally. In order to compensate for this, as well
as centroid computation errors, Iterative Closet Point (ICP)
[2] is performed on M ′p and C. The algorithm assumes that
the objects are mostly upright and disqualifies candidate
models if the rotation around the ground plane is beyond
a threshold. The resulting transformation matrix TICP is
saved. Tcenter and TICP are now both applied to the com-
plete model Mc out of which Mp was generated yielding
M ′c = TICPTcenterMc. Consequently, M ′c represents the
complete model Mc mapped into world coordinates at the
candidate location.

4.4. Occlusion

Each point in the mapped complete model M ′c is now
checked for occlusion. This is done through a technique
based on ray casting. We adapted traditional ray casting to
the property of a laser for which the lateral error typically
increases with radial distance. As such, for each point p in
M ′c, we check if any point in W lies within a cone origi-
nating at the viewpoint origin and facing p. To check this
easily, all the points in M ′c and the world W are transformed
to radial coordinates around the viewpoint. The slope of the
cone is tuned to match the known angular error of the laser.
In order to compensate for noise in the radial distance, we
require the occluding point to be a minimum distance in
front of the occluded point. In addition, because a model
should not occlude itself, we remove C from W prior to
the occlusion test. Points that have been determined to be
occluded in this way are omitted from M ′c. The resulting
model M∗c = occlude(M ′c,W ) is then scored.



Figure 5. Experimental setup.

(a) Sample point cloud. Red: cluster classified by VFH as the top of a chair.

(b) False positive detection. (c) True positive detection.

Figure 6. Example of false positive and true positive detection.

4.5. Scoring

The scoring of M∗c is done by checking if each point p
in M∗c can be matched against a point in W . A point p in
M∗c is declared to have a match if W has a point within a
small sphere around p. The final score is set to bo the ratio
of matched points to total points in M∗c . However, different
scoring techniques are possible here. For example, an addi-
tional weighting factor determined by the number of points
in M∗c could be added to capture the lack of evidence that
only a small number of points provides. Additionally the
scoring could be done two-ways. This is, ensure that not
just M∗c coincides with W and C but that C also coincides
with M∗c . This would guarantee that most points in C have
to actually be accounted for. Details are discussed in Sec-
tion 5.2.

5. Experiments and Analysis

To verify our approach, we tested it on real scans ob-
tained through a Hokuyo laser range finder on a Pan Tilt
Unit.

We first created models of a chair and table for 7 dis-
tances and 16 rotations from scans with the laser range
finder. The distances were chosen to yield a constant verti-
cal viewpoint change of 9◦ on the obstacle. For our sensor
height of approximately 1.5m, this resulted in distances of
0.86m, 1.09m, 1.35m, 1.66m, 2.06m, 2.59m and 3.37m. For
each of the distances, scans of the object with a 22.5◦ rota-
tional step size were obtained. This resulted in a total of 224
complete model scans. Out of those models, an additional
1068 partial models were auto-generated by consecutively
removing points from bottom to top, left to right, and right
to left from the model. We used a 10cm step size and pro-
ceeded until the remaining model had a size between 20-
30cm on the axis currently affected by the point removal.
Fig. 3 shows an example.

We took 30 test scans of scenes in an office environment
with random configurations of up to four chairs of differ-
ent types and two tables per scan. These scenes had non-
furniture items, walls, unoccluded furniture, and partially
occluded furniture. For example, some scenes had chairs
behind and or pushed under a table. An example setup can
be seen in Fig. 5 and the according point cloud is visualized
in Fig. 6(a). As shown below, these are difficult cases for
vanilla VFH which uses only complete models.

5.1. Results

To obtain the following results we used the chi-squared
distance metric for all comparisons between VFHs.

Fig. 7(a), Fig. 7(b), and Fig. 7(c) visualize the behavior
of the classification error rates of different algorithms as the
VFH threshold is relaxed. The True Positive Rate (TPR)
denotes the ratio of actual furniture correctly identified; the
False Positive Rate (FPR) the ratio of non-furniture incor-
rectly identified. Due to clustering errors explained below,
not all objects in all test scenes could be classified by VFH
or VPOD (or could be by any other algorithm that classifies
based on clusters).

Fig. 7(a) shows the behaviour of vanilla VFH using only
complete models on the dataset and the same algorithm with
pre-filtering of clusters, as described in Section 5.3. Even
if the VFH threshold is relaxed greatly, allowing many false
positives, VFH is unable to correctly classify many clusters
due to partial occlusions. Despite having more than 40%
false positive rate, vanilla VFH was not able to achieve the
maximal possible classification rate on our dataset. Even at
a low threshold, vanilla VFH still produced a 5% false pos-
itive rate while only classifying 70%. Prefiltering provides
only a modest reduction in the false positives produced by



(a) Filtering improvement (b) Partial models improvement

(c) VPOD improvement

Figure 7. Relative operating characteristic, showing improvement
over VFH. Dashed line marks the best possible rate, due to clus-
tering errors.

VFH. This sows that pre-filtering alone does not account for
all of the benefits of VPOD.

Fig. 7(b) shows the behaviour of VFH with and with-
out partial models. At very low VFH thresholds, the partial
models have no effect. As the threshold increases, the par-
tial models are allowed to incorrectly match clusters, caus-
ing an increase in the false positive rate relative to complete
models alone. But vanilla VFH using only complete mod-
els can only match the unoccluded clusters well and must
allow many false positives in order to match the partially oc-
cluded clusters. However, VFH with partial models is able
to classify all test clusters with a 23 point reduction in the
FPR. This is because VFH with partial models can match
partially occluded clusters using a tighter VFH threshold.

Fig. 7(c) shows the behaviour of VPOD compared to
VFH using complete models. Fig. 7(c) shows that VPOD,
through the use of partial models, similar to Fig. 7(b), prop-
erly classified all test cases. Unlike VFH with partial mod-
els, VPOD classified all test cases with only a 1.3% false

(a) Example of a chair and table be-
ing clustered together.

(b) Example of a small model fitted
into a big cluster.

Figure 8. Examples of where our algorithm fails.

positive rate, due to the VPOD verification step. This al-
lows VPOD to classify the partially occluded objects with-
out introducing many false positives.

These results demonstrate the usefulness of VPOD.

5.2. Examples

We disabled the pre-filtering and ICP restriction on y-
axis rotation to obtain the following examples.

Fig. 6(b) demonstrates an example of the false positive
detection. VFH classification with partial models classified
the cluster marked red in Fig. 6(a) as being the top part
of a chair. The algorithm then mapped the complete chair
into world and scored it. Since the sitting surface is not oc-
cluded but also not visible in the scan this classification was
rejected. In contrast, the table behind the chairs in Fig. 6(a)
was matched by VFH with partial models and verified by
the algorithm. Note that due to the occlusion, vanilla VFH
using just complete models would not be able to classify the
table.

Fig. 8(b) demonstrates a typical example where our al-
gorithm fails if no pre-filtering or two-way matching is per-
formed. If the cluster is unreasonably large, almost any
furniture piece can be fitted in and have its points being
accounted for. In Fig. 8(b) a chair (green) is being fitted
into a big wall (fitted chair shown in blue). The algorithm
is effectively saying that the chair is lodged in the wall.
This demonstrates the necessity of pre-filtering or two-way
matching in combination with our algorithm.

5.3. Clustering

The clustering distance is currently set to a fixed value.
This can yield results similar to Fig. 8(a) where multiple
furniture pieces have been clustered together, which hin-
ders classification. In future work we plan to have the clus-
tering distance be data driven. The basic assumption is that
points on the same object have a smaller relative distance to
each other than points between objects. We therefore plan
to evaluate the distances of points within a cluster and re-
cluster a cluster based on a new, smaller distance. Clusters
that are not classified can be progressively partitioned and
reclassified until either a match is found or the cluster size



is unreasonably small.
Further, many objects such as chairs and tables can ap-

pear as multiple distinct parts due to self-occlusions. For
example, when observing most standard office chairs, we
typically observe the chair’s seat, back, and wheeled base,
but not the central supporting column due to the downward
viewing angle. Similar results can occur as well with other
types of furniture. To address this problem, we plan to
project the clusters down to the ground plane, find the con-
vex hull for each, and merge clusters that have overlap. This
allows us to consider such objects as one unit, despite being
separated by a significant vertical distance. Again, this step
can be verified by checking if the classification results have
improved in comparison to the single clusters.

5.4. Runtime

We are performing the occlusion and matching simulta-
neously in VPOD. As such the occlusion and matching to-
gether takes an average of 3.3 seconds for a world scan with
about 32,000 points and an average cluster size of 19,000
points. If runtime is a concern the occluding and matching
do not need to be run against the full point cloud. Rather,
it can easily be determined which parts of the world are af-
fecting the current occlusion and matching operation and
the operation be performed against a subset of the world.

6. Conclusion

In this paper we presented the VPOD algorithm for
detecting partially occluded objects by matching clusters
against segments of models and verifying our expectations
against the world. VPOD extends the scope of vanilla VFH
classification by using partial models. To reject false posi-
tives, VPOD verifies expectations about the predicted clas-
sification with the world. We verified the effectiveness of
our approach on real data, showing improvement on cases
not handled by VFH with complete models alone.

We are currently working on improving the clustering
algorithm as described above. In addition, we are investi-
gating techniques of enhancing the clustering through feed-
back from the algorithm. It is possible to eliminate points
from a cluster which correspond with points in a match-
ing model and rerun the remaining cluster. For example the
cluster visualized in Fig. 8(a) was actually classified as a ta-
ble by our algorithm, the table could then be removed from
the cluster and the remaining cluster classified as a chair.

Further, we are currently integrating VPOD into seman-
tic mapping and NAMO algorithms on our robot.
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