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Kinematics and Inverse Kinematics for the Humanoid Robot HUBO2+

Rowland O’Flaherty†, Peter Vieira†, Michael Grey†,
Paul Oh‡, Aaron Bobick†, Magnus Egerstedt†, and Mike Stilman†

Abstract—This paper derives the forward and inverse kine-
matics of a humanoid robot. The specific humanoid that the
derivation is for is a robot with 27 degrees of freedom but
the procedure can be easily applied to other similar humanoid
platforms. First, the forward and inverse kinematics are derived
for the arms and legs. Then, the kinematics for the torso and
the head are solved. Finally, the forward and inverse kinematic
solutions for the whole body are derived using the kinematics of
arms, legs, torso, and head.

I. INTRODUCTION

In this paper we present a derivation of the forward
kinematics (FK) and inverse kinematics (IK) of a humanoid
robot with 27 degrees of freedom, specifically the HUBO 2+
platform (Hubo). A picture of Hubo is shown in Fig. 1. The
FK and IK are not solved for the entire 27 joints but instead
broken up into six parts. These parts consist of the two arms
(six joints each), the two legs (six joints each), the torso (1
joint), and the head (2 joints). The majority of the paper is
spent on the arms and the legs because the head and torso
are almost trivial. However, even though the head and torso
are simple to solve for as individual parts they can not be
ignored because for a full body FK and IK they are essential
components.

Having the forward kinematics (FK) and inverse kinematics
(IK) is crucial in any robot manipulator especially for a
humanoid robot. This is because usually it is desirable to
control the end-effector of the robot (e.g. the hand of one arm)
in its workspace, not in joint space. In other words, tell the
hand of the humanoid to go to point (x, y, z) not tell the
joints to go to values θi. However, the joint values are what
can be directly controlled, therefore, one needs to know how
to convert from workspace to joint space and vice versa.

Ali et. al. presented a closed-form solution for the inverse
kinematics (IK) of the limbs of the HUBO2+ robot platform
[1]. They used a reverse decoupling mechanism method by
viewing the kinematic chain of a limb in reverse order and
decoupling the position and orientation. The authors then used
the inverse transform method to compute eight possible solu-
tions for each limb. The correct solution is selected based on
joint limits and constraints. In working through their solution,
discrepancies were found in the calculations. We corrected the
errors and solved for the IK of all four limbs for our HUBO2+
humanoid robot. Using the IK for the four limbs and the head
and torso we have formulated an IK for the entire robot.
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Fig. 1. The Humanoid Robot Hubo2+ for which we calculate kinematics.

II. HUBO GEOMETRY AND KINEMATICS

In order to control a humanoid using workspace control
both forward and inverse kinematic solutions are required. The
solution to this problem involves solving for the joint angles
given a desired position and orientation while accounting for
singularities, joint limits and feasible workspace issues.

The kinematic structure of the right and left side of Hubo
are identical, therefore, the left and right arms have the
same joint coordinate frames and Denavit-Hartenberg (DH)
parameters, as do the left and right legs. The only difference
between the left and the right limbs is the offset direction
from the base frame. We first go through the solution for the
IK of the arms, and then the legs. The joint coordinate frames
are shown in Fig. 2 and the length of each link is shown in
Table I. The DH parameters (using the standard convention)
for the arms and legs are shown in Table II and Table III,
respectively.

A. Forward Kinematic Solution for the Arm

The forward kinematics problem is that of solving for the
end-effector orientation and position given the joint angles.
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Fig. 2. Hubo coordinate frames

TABLE I. LINK LENGTHS OF HUBO

Lengths of arm links
Link Length (mm)
lA1 215
lA2 179
lA3 182
lA4 121
lE 178

Lengths of leg links
Link Length (mm)
lT 187
lL1 88
lL2 182
lL3 300
lL4 300
lL5 95

This is easily solved using the robot geometry and coordinate
frames, which are specified in the DH parameters. The general
homogeneous transformation from one link to the next given
the DH parameters is represented in matrix form as:

i−1Ti =

cos(θi) − sin(θi) cos(αi) sin(θi) sin(αi) ai cos(θi)
sin(θi) cos(θi) cos(αi) − cos(θi) sin(αi) ai sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

. (1)

where i−1Ti is the transformation from coordinate frame i−1
to frame i. The base frame for the arm is at the neck, and its
tranformation to the first shoulder joint is

NTA0 =

0 0 1 lA1

1 0 0 0
0 1 0 0
0 0 0 1

 . (2)

An additional transformation 6TE is used for the transfor-
mation from the hand to the end-effector. In order calculate
the forward kinematics (FK), the six transformation matrices
from each joint are pre-multiplied to obtain the position and
orientation of the end-effector relavtive to the shoulder. We
define the transformation from the shoulder to the hand as

A0TA6 = A0TA1
A1TA2

A2TA3
A3TA4

A4TA5
A5TA6. (3)

Thus, when solving for the forward kinematics of the end-
effector with respect to the neck A0TA6 must be pre-multiplied
by NTA0 and post-multiplied by A6TE . Therefore, given a set
of joint angles the FK is calculated as

NTE = NTA0
A0TA6

A6TE . (4)

TABLE II. DH PARAMETERS OF THE ARMS

Right arm DH parameters
Coord. Frame i θi αi ai di

1 θ1 + π/2 π/2 0 0
2 θ2 − π/2 π/2 0 0
3 θ3 + π/2 −π/2 0 −lA2

4 θ4 π/2 0 0
5 θ5 −π/2 0 −lA3

6 θ6 + π/2 0 lA4 0

B. Inverse Kinematic Solution for the Arm

The inverse kinematics is the problem of solving for the
joint angles given the end-effector orientation and position,
specified as NTE . This is a much harder problem because there
are multiple solutions. When solving the inverse kinematics of
a manipulator, Pieper [2] indicates that a closed-form solution
exists if three consecutive joint axes of the manipulator are
parallel to one another, or intersect at a single point. The three
shoulder joint axes on the Hubo intersect at a single point for
the arms, and the three hip joints intersect at a single point for
the legs, therefore a closed-form kinematic solution exists for
both the arms and the legs.

We will solve the IK problem from the shoulder to the
hand by using the transformation A0TA6. This is obtained by
pre-multiplying NTE by A0TN and post-multiplying by ETA6.
Thus,

A0TA6 =A0 TN
NTE

ETA6. (5)

Let us write A0TA6 obtained from NTE as

A0TA6 =

[
x6 y6 z6 p6
0 0 0 1

]
=

[
n s a p
0 0 0 1

]
, (6)

where x6, y6, and z6 are the unit vectors along the principal
axes of the hand frame and p6 is the position vector describing
the location of the hand relative to the shoulder. These three
unit vectors describe the orientation of the hand coordinate
frame relative to the shoulder coordinate frame. The vectors n,
s, a, and p represent the normal vector, sliding vector, approach
vector, and position vector of the hand, respectively [3].

Using this knowledge, the arm can be viewed in reverse
so that the last three joints make up the shoulder, thus the
position and orientation of the shoulder frame can be described
relative to the hand frame. This new position vector, p′, is only
a function of θ4, θ5 and θ6, and thus decouples the arm into
position and orientation components. The IK problem is solved
in this reverse method by taking the inverse of both sides of
(6).

A0TA6
′ =

[
n s a p
0 0 0 1

]′
=

[
n′ s′ a′ p′

0 0 0 1

]
= A6TA0

(7)
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As in [1], we will now show how to use this reverse method
to solve for the joint angles of the right arm. To solve for
the last three joint angles (i.e., the elbow, wrist yaw and wrist
pitch angles) we can use the inverse transform method [1] by
multiplying both sides of (7) by A5TA6. This results in an
equation where the left side of the equation is1,

G
(left)
5−arm = A5TA6

[
n′ s′ a′ p′

0 0 0 1

]
=

−S6n
′
x − C6n

′
y, −S6s

′
x − C6s

′
y, −S6a

′
x − C6a

′
y, −S6(p

′
x + lA4)− C6p

′
y

C6n
′
x − S6n

′
y, C6s

′
x − S6s

′
y, C6a

′
x − S6a

′
y, C6(p

′
x + lA4)− S6p

′
y

n′z, s′z, a′z, p′z
0, 0, 0, 1

, (8)

and the right side of G5 is

G
(right)
5−arm = A5TA0 = A5TA4

A4TA3
A3TA2

A2TA1
A1TA0 =g511 g512 g513 −lA2C5S4

g521 g522 g523 −lA2C4 − lA3

g531 g532 g533 lA2S4S5

0 0 0 1

. (9)

We can solve for the last three joint angles by equating the
position terms of (8) and (9) to get

S6(p
′
x + lA4) + C6p

′
y = S4C5lA2 (10)

C6(p
′
x + lA4)− S6p

′
y = −C4lA2 − lA3 (11)
p′z = lA2S4S5. (12)

The joint angle θ4 is solved for by first letting p′x+ lA4 = rCψ
and p′y = rSψ and then substituting these into (10) and (11)
in addition to using the trigonometric sum identities to obtain,

rS6ψ = S4C5lA2 (13)
rC6ψ = −C4lA2 − lA3 (14)
p′z = S4S5lA2 (15)

where r =
√
(p′x + lA4)2 + (p′y)

2 and ψ = atan2(p′y, p
′
x +

lA4)
2. By then squaring (13), (14) and (15) and adding them,

we can obtain an equation for C4:

C4 =
(p′x + lA4)

2 + p′y
2 + p′z

2 − l2A2 − l2A3

2lA2lA3
,

from which we can obtain the elbow joint solution,

θ4 = atan2

(
±real

(√
1− C2

4

)
, C4

)
. (16)

From (15) we solve for S5, and from that we solve for the
wrist yaw joint solution θ5,

S5 =
p′z

S4lA2
,

θ5 = atan2

(
S5,±real

(√
1− S2

5

))
. (17)

To obtain the wrist pitch joint solution θ6 we first divide (13)
by (14) to get

tan(θ6 + ψ) =
S6ψ

C6ψ
=

S4C5lA2

−C4lA2 − lA3
, (18)

1The sine and cosine of an angle α is abbreviated Sα and Cα, respectively.
2atan2(y, x) is the two argument arc tangent function.

from which we solve for θ6 as3

θ6 = wrapToPi(atan2(S4C5lA2,−C4lA2 − lA3)− ψ). (19)

To solve for the three shoulder joints we calculate G3 by pre-
multiplying (8) and (9) by A4TA5 and A3TA4 to obtain,

G
(left)
3−arm = A3TA4

A4TA5
A5TA6

[
n′ s′ a′ p′

0 0 0 1

]
=g311 g312 g313 g314

g321 g322 g323 g324
g331 g332 g333 g334
0 0 0 1

 (20)

on the left hand side and

G
(right)
3−arm = A3TA0 = A3TA2

A2TA1
A1TA0 =C1C3 + S1S2S3 C3S1 − C1S2S3 C2S3 0

−C2S1 C1C2 S2 −lA2

C3S1S2 − C1S3 −S1S3 − C1C3S2 C2C3 0
0 0 0 1


(21)

on the right hand side. By comparing element (2,3) of (20)
and (21) we obtain S2, and use that to get C2 and finally the
shoulder roll joint solution θ2. Thus,

S2 = g323 = a′x(C4C6 − C5S4S6)− a′y(C4S6 + C5C6S4)

− a′zS4S5,

θ2 = atan2

(
S2,±real

(√
1− S2

2

))
. (22)

We compare elements (1,3) and (3,3) of (20) and (21) to obtain
two equations. If we divide these we obtain S3 and C3 and
then solve for the shoulder yaw joint solution θ3,

g313
g333

=
C2S3

C2C3
,

S3 = g313 = −a′x(C6S4 + C4C5S6) + a′y(S4S6 − C4C5C6)

− a′zC4S5,

C3 = g333 = −a′xS5S6 − a′yC6S5 + a′zC5,

θ3 = atan2(S3, C3). (23)

We perform the same procedure to obtain the last joint solution,
θ1, which is the shoulder pitch angle. We compare elements
(2,1) and (2,2) of (20) and (21) and divide them to obtain,

g321
g322

=
−C2S1

C2C1
,

S1 = −n′x(C4C6 − C5S4S6) + n′y(C4S6 + C5C6S4)+

n′zS4S5,

C1 = s′x(C4C6 − C5S4S6)− s′y(C4S6 + C5C6S4)−
s′zS4S5,

θ1 = atan2(S1, C1). (24)

There are two solutions for θ2, θ4, and θ5, therefore there
are eight total solutions to the arm IK. When the goal position
is outside the feasible workspace of the limb, the joint solutions
will have imaginary parts. To deal with this, we take only the

3wrapToPi(α) wraps the angle α to the interval between −π and π.
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real parts, which in turn gives the solution that is closest to the
desired position. Furthermore, there are five cases that result
in singularities, and details of the solution methods can be
viewed in [1]. The following are our final equations for each
case of the singularity conditions.

1) Case 1 (elbow singularity): When θ4 = 0 joints θ3 and
θ5 are collinear, thus an infinite number of solutions exist to
orient the end-effector in the desired orientation. We set θ3 to
its previous value and define θS = θ5 + θ3. These joint angles
are solved by first solving for θ6 by using elements (2,4) and
(1,4) of (5) and (6). Then solving for θS by using elements
(1,3) and (3,3) of (8) and (9). Finally, θ5 is found from θS .
Thus,

θ6 = atan2

(
p′y

lA2 + lA3
,
−lA4 − p′x
lA2 + lA3

)
,

θ′S = atan2(−C6a
′
y − S6a

′
x, a
′
z),

θS =

{
θ′S if C2 ≥ 0
wrapToPi(θ′S + π) if C2 < 0

,

θ5 = wrapToPi(θS − θ3).

2) Case 2 (shoulder singularity): When θ2 = π/2 (for the
left arm) or −π/2 (for the right arm) joints θ1 and θ3 are
collinear. The same approach as above is performed. However,
θS = θ3 ± θ5 and solving for it uses elements (2,1) and (2,2)
of (8) and (9). This results in the following

θ′S = atan2(S6s
′
y − C6s

′
x, S6n

′
y − C6n

′
x),

θS =

{
θ′S if S4 ≥ 0
wrapToPi(θ′S + π) if S4 < 0

,

θ1 =

{
wrapToPi(θS + θ3) for left arm
wrapToPi(θS − θ3) for right arm .

3) Case 3 (elbow-shoulder singularity): When θ4 = 0 and
θ2 = π/2 (for the left arm) or −π/2 (for the right arm) joints
θ1, θ3 and θ5 are collinear. The same approach as above is
taken. However, θS = θ1 ± θ3 ± θ5, and solving for it uses
elements (3,1) and (3,2) of (8) and (9). This results in the
following,

θLEFTS = atan2(n′z,−s′z),
θRIGHTS = atan2(−n′z, s′z),

θ5 =

{
wrapToPi(θ1 − θ3 − θLEFTS ) for left arm
wrapToPi(θRIGHTS − θ1 − θ3) for right arm .

C. Forward Kinematic Solution for the Leg

As with the arm, the forward kinematics of the leg, NTF ,
are straight forward once the DH parameters are derived. The
DH parameters for the right leg are shown in Table III and
again (1) is used to find the transformation between adjacent
joint coordinate frames. The base frame for the leg is at the
waist, and its tranformation to the first hip joint is,

WTL0 =

0 −1 1 ±lL1
1 0 0 0
0 0 1 −lL2
0 0 0 1

 , (25)

use a positive lL1 for the left leg and a negative lL1 for the
right leg. We define the transformation from the hip to the foot
as

L0TL6 = L0TL1
L1TL2

L2TL3
L3TL4

L4TL5
L5TL6. (26)

Thus, when solving for the forward kinematics WTF must
be pre-multiplied by WTL0 and post-multiplied by L6TF .
Therefore, the FK is calculated as

WTF = WTL0
L0TL6

L6TF . (27)

TABLE III. DH PARAMETERS OF THE LEGS

Right leg DH parameters
Coord. Frame i θi αi ai di

1 θ1 + π/2 0 0 0
2 θ2 − π/2 −π/2 0 0
3 θ3 0 lL3 0
4 θ4 0 lL4 0
5 θ5 π/2 0 0
6 θ6 0 lL5 0

D. Inverse Kinematic Solution for the Leg

Similar to the IK for the arm the IK for the leg is solved
from the hip to the foot by using the transformation L0TL6.
This is obtained by pre-multiplying WTF by L0TW and post-
multiplying by FTL6. Let us write L0TL6 for the legs in the
same way as for the arms in

L0TL6 = L0TW
WTF

FTL6. (28)

As with the arm, the three hip joint axes in the leg on Hubo
intersect at a single point, therefore a closed-form kinematic
solution exists. The six tranformation matrices are obtained by
plugging the DH parameters into (1) and pre-multiplying them
to obtain the position and orientation of the foot relavtive to
the hip,

L0TL6 =

[
x6 y6 z6 p6
0 0 0 1

]
=

[
n s a p
0 0 0 1

]
(29)

where x6, y6 and z6 are the unit vectors along the principal
axes of the foot frame and describe the orientation of the foot
coordinate frame relative the the hip coordinate frame, and p6
is the position vector describing the location of the foot relative
to the hip. The vectors in [n s a p] again represent the normal
vector, sliding vector, approach vector and position vector of
the foot, respectively [3].

The leg can be viewed in reverse so that the last three
joints make up the hip, and now the position and orientation
of the hip frame can be described relative to the foot frame.
This new position vector, p′, is only a function of θ4, θ5 and
θ6, and thus decouples the leg into position and orientation
components. The IK problem is solved in this reverse method
by taking the inverse of both sides of (29),

L0TL6
′ =

[
n s a p
0 0 0 1

]′
=

[
n′ s′ a′ p′

0 0 0 1

]
= L6TL0.

(30)

We can solve for the last three joint angles by equating the
position terms of both sides of (30),

−C6(lL3C45 + lL4C5) = p′x + lL5, (31)
S6(lL3C45 + lL4C5) = p′y, (32)

−lL3S45 − lL4S5 = p′z. (33)
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We have three equations with the three unknowns θ4, θ5 and
θ6. We can solve for C4 by squaring and adding all three
equations, and then obtain S4 from C4. This results in,

C4 =
(p′x + lL5)

2 + p′y
2 + p′z

2 − l2L3 − l3L4
2lL3lL4

θ4 = atan2

(
±real

(√
1− C2

4

)
, C4

)
. (34)

We can get θ5 by squaring equations (31) and (32) and adding
them to get,

C5(C4lL3 + lL4)− S5(S4lL3) = ±real
(√

(p′x + lL5)2 + p′y
2
)
.

(35)

Then, we can expand (33) to yield,

S5(C4lL3 + lL4) + C5(S4lL3) = −p′z. (36)

If we let C4lL3 + lL4 = rCψ and S4lL3 = rSψ and substitute
these into (35) and (36) we get,

rC5ψ = ±
√

(p′x + lL5)2 + p′y
2 (37)

rS5ψ = −p′z (38)

where

r = ±real
(√

(p′x + lL5)2 + p′y
2 + p′z

2
)
,

ψ = atan2(S4lL3, C4lL3 + lL4).

We can obtain tan(θ5+ψ) by dividing (38) by (37), and then
taking the inverse. By then subtracting ψ we can solve for the
joint angle θ5,

θ5 = wrapToPi(atan2(−p′z,

± real(
√

(p′x + lL5)2 + p′y
2))− ψ). (39)

To get the joint solution for θ6 we can divide (32) by (31),

θ6 = atan2(p′y,−p′x − lL5). (40)

If C45lL3 +C5lL4 < 0, then θ6 = wrapToPi(θ6 + π). Just as
with the right arm, we will use the reverse method to solve for
the joint angles of the right leg. To solve for the last three joint
angles (i.e., the knee, ankle roll and ankle pitch joint angles)
we can use the inverse transform method, just as we did for the
right arm, by multiplying both sides of (30) by L5TL6. This
results in an equation we will call G5, where the left hand side
of the equation is,

G
(left)
5−leg =

L5TL6

[
n′ s′ a′ p′

0 0 0 1

]
=C6n

′
x − S6n

′
y, C6s

′
x − S6s

′
y, C6a

′
x − S6a

′
y, C6(p

′
x + lL5)− S6p

′
y

S6n
′
x + C6n

′
y, S6s

′
x + C6s

′
y, S6a

′
x + C6a

′
y, S6(p

′
x + lL5) + C6p

′
y

n′z, s′z, a′z, p′z
0, 0, 0, 1


(41)

and the right hand side of G5 is,

G
(right)
5−leg = L5TL0 = L5TL4

L4TL3
L3TL2

L2TL1
L1TL0 =g511 g512 g513 −lL3C45 − lL4C5

g521 g522 g523 0
g531 g532 g533 −lL3S45 − lL4S5

g541 g542 g543 1

 . (42)

We can get the joint solution for θ2 by setting element (2,3)
of (41) and (42) equal to get,

S2 = S6a
′
x + C6a

′
y (43)

θ2 = atan2(S6a
′
x + C6a

′
y,±real(

√
1− (S6a′x + C6a′y)

2)).

(44)

We get the joint solution for θ1 by comparing elements (2,1)
and (2,2) of (41) and (42) and then dividing them to get,

C2S1 = S6s
′
x + C6s

′
y (45)

C2C1 = S6n
′
x + C6n

′
y (46)

θ1 = atan2(S6s
′
x + C6s

′
y, S6n

′
x + C6n

′
y). (47)

If C2 < 0, then θ1 = wrapToPi(θ1+π). Finally, to obtain the
joint solution for θ3 we start by comparing elements (1,3) and
(3,3) of (41) and (42) to get two equations, and then divide
them to get θ345,

−C2S345 = a′z (48)
−C2C345 = C6a

′
x − S6a

′
y (49)

θ345 = atan2(a′z, C6a
′
x − S6a

′
y) (50)

Then from (50) we can obtain θ3 by subtracting θ4 and θ5,

θ3 = wrapToPi(θ345 − θ4 − θ5). (51)

As with the arm there are two solutions for θ2, θ4, and θ5,
which generate eight total solutions to the leg IK. Lik with
the arm, if the goal position is outside the feasible workspace
of the limb the joint solutions will have imaginary parts and
only the real parts are used.

E. Choosing Joint Solution

For the inverse kinematics of each of the arms and the legs
there are eight joint solutions. The sum of squared joint values
is the primary metric that is used in picking one of the eight
solutions. Choosing the solution that minimizes this metric is
the solution that is “closest” to the zero position of the joints.
This works well if at least one of the solutions has all of its
joints values within the joint limits (Table IV).

If none of the solutions have all the joint values within the
limits then there is no solution that satisfies the desired pose
(orientation and position). To get the end-effector to a position
as close as possible to the desired position the joint values in
all the solutions are capped at the closest joint limit value. Each
of the solutions are then given to the FK to calculate the end-
effector location with the capped joint values. The solution
that gets the end-effector position the closest to the desired
position is used. If none of the joint solutions get the end-
effector within 5 cm of the desired position then the previous
joint values are used.

TABLE IV. JOINT LIMITS OF THE ARMS AND LEGS

Arms Legs
Joint Left Right Left Right

i min. max. min. max. min. max. min. max.
0 -2.0 2.0 -2.0 2.0 0 1.8 -1.8 0
1 -0.3 2.0 -2.0 0.3 0 0.6 -0.6 0
2 -2.0 2.0 -2 2.0 -1.3 1.4 -1.3 1.4
3 -2.5 0 -2.5 0 0 2.5 0 2.5
4 -2.5 2.0 -2.5 2 -1.3 1.8 -1.3 1.8
5 -1.4 1.2 -1.4 1.2 -0.3 0.2 -0.2 0.3
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F. Forward and Inverse Kinematics for the Torso

The kinematics for the torso are almost trivial because
the torso only has one joint at the waist, but is still worth
presenting. The transformation from the waist to the neck is

WTN =

CθT −SθT 0 0
SθT CθT 0 0
0 0 1 lT
0 0 0 1

 , (52)

where θT is the angle of the waist joint. Thus, (52) is the FK
for the torso. The IK is also just as simple. Given WTN in the
form

WTN =

[
n s a p
0 0 0 1

]
(53)

then the angle of the waist joint is

θT = atan2(ny, nx). (54)

G. Forward and Inverse Kinematics for the Head

The kinematics for the head have two joints, so they are
slightly more complex than the torso, but still simple. The
transformation from the neck to the head is

NTH =NTH0
H0TH1

H1TH2
H2TH =C1C2 −S1 C1S2 lH2C1S2

C2S1 C1 S1S2 lH2S1S2

−S2 0 C1 lH1 + lH2C1

0 0 0 1

 . (55)

Thus, (55) is the FK for the head given the two joint angles.
Given NTH in the form

NTH =

[
n s a p
0 0 0 1

]
(56)

the IK for the head is solved by

θ1 = atan2(sy,−sx),
θ2 = atan2(nx, ax). (57)

H. Forward and Inverse Kinematics for the Full Body

With a humanoid robot most tasks are going to be pre-
formed with the hands or with some tool that the hands are
manipulating. Therefore, ultimately one would like to be able
to specify some pose in the global frame for the end-effector
of the hand and have all the joints on the robot move so that
pose is reached. To accomplish this full body IK we break the
problem up into parts. First, we assume the robot can walk
to a location such that the desired hand location is reachable
the hand. Next, the legs will be used to position the neck
at the height of the desired hand position. This is because
the workspace plane for the arms is maximized at shoulder
height, which is the same level as the neck frame. Next, the
waist will rotate so that the shoulder is as close as possible to
the desired hand location. Finally, the arm will move the hand
to the desired pose.

Given a desired transformation from the global frame to
the end-effector in the form

GTE =

[
n s a p
0 0 0 1

]
, (58)

where we assume that the robot has already walked to a
suitable position, then the IK is as follows:

1) Set WTF to identity with the exception of setting the
(2,4) element to py − lT and use the leg IK with this
transformation to put the neck at the correct height.

2) Calculate WTE using the FK of the legs.
3) Set θT to −atan2(W px,

W py) (left hand) or π −
atan2(W px,

W py) (right hand), where W p is the
position vector of WTE .

4) Calculate NTE using the FK of the legs and waist
and use that with the IK of the arms to position the
end-effector.

III. CONCLUSION

In this paper we have derived the forward and inverse
kinematics for a humanoid robot with 27 degrees of freedom.
The specific humanoid robot that this was designed for is the
HUBO2+ platform, but this can easily be used for any robot
with the same joint configuration. The kinematics solutions
were divided up into four parts: arm, leg, torso, and head.
Analytical solutions were derived for each part. Then, using
these analytical solutions an algorithm is developed to obtain
the forward and inverse kinematics for the entire robot.
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