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Abstract— We present a successful implementation of rigid
grasp manipulation for large objects moved along specified
trajectories by a humanoid robot. HRP-2 manipulates tables on
casters with a range of loads up to its own mass. The robot
maintains dynamic balance by controlling its center of gravity
to compensate for reflected forces. To achieve high performance
for large objects with unspecified dynamics the robot learns a
friction model for each object and applies it to torso trajectory
generation. We empirically compare this method to a purely
reactive strategy and show a significant increase in predictive
power and stability.

I. INTRODUCTION

A number of successful approaches to humanoid locomotion
simplify the problem to controlling the robot center of mass.
Consider a similar approach to the task of humanoid manipu-
lation. Manipulated objects may be flexible or articulated due
to joints or casters. Unlike robots, these objects rarely have
pre-existing models. Yet, we show that simple low order differ-
ential equations may be sufficient to express object dynamics.
In the context of humanoid manipulation, we evaluate a data
driven algorithm that learns and uses simple object models to
increase performance.

We are primarily interested in manipulation of large objects
such as carts, tables, doors and construction materials. Small
objects can be lifted by the robot and modeled as additional
robot links. Heavy objects are typically supported against
gravity by external sources such as carts, door hinges or con-
struction cranes. Yet, neither wheeled objects nor suspended
objects are reliable sources of support for the robot. Large,
heavy objects are interesting because they require the robot
to handle significant forces while maintaining balance. Using
learned models we show that even 55kg objects, equal to the
robot’s mass, can be moved along specified trajectories.

II. RELATED WORK

Early results in humanoid manipulation considered balance
due to robot dynamics. Inoue [1] changed posture and stance
for increased manipulability and Kuffner [2] found collision-
free motions that also satisfied balance constraints. These
methods did not take into account object dynamics. In contrast,
Harada [3] extended the ZMP balance criterion for pushing
on an object with known dynamics. Harada [4] also proposed
an impedance control strategy for pushing objects during the
double support phase of walking. We focus on continuous
manipulation during all walking phases.

With the introduction of preview control by Kajita[5],
Takubo [6] applied this method to adapting step positioning
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Fig. 1. (a) Abstract model represents a grasped object and the robot
center of gravity. (b-c) Successful manipulation of a 55kg object on
casters without prior knowledge of mass or friction.

while pushing on an object. Nishiwaki[7][8] proposed that
the external forces from pushing could be handled by rapid
trajectory regeneration. Yoshida [9][10] locally modified the
planned path for a light carried object to avoid collisions intro-
duced by applying preview control. Our work extends beyond
pushing and modification to realizing a desired trajectory for a
heavy object. Furthermore, in contrast to assuming that objects
are known or external sources of error, we learn about their
response to our force inputs.

Recently, most studies of interaction with unknown objects
have been kinematic. Krotkov[11] and Fitzpatrick[12] studied
impulsive manipulation to detect the affordances of object
through various sensors. Stoychev[13] considered learning to
use objects for specific behaviors and Christiansen[14] learned
to manipulate an object between a set of discrete states.
However, when manipulating large objects the controller must
take into account the continuous dynamic effect these objects
have on the balance and stability of the robot.

While our focus is on learning the dynamic model of an
unknown object, this paper is closely related to modeling
robot dynamics. Atkeson [15] summarizes approaches to
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learning or adapting parameters to achieve precise trajectory
following. Friction modeling, in particular has been studied
extensively as summarized by Canudas [16] and Olsson[17].
More sophisticated methods for learning the dynamics of tasks
in high dimensional spaces are studied by Atkeson, Moore and
Schaal [18][19].

III. MOTIVATION FOR LEARNING MODELS

Our goal is to reliably manipulate massive objects along
desired trajectories. The robot is not informed of the object dy-
namics, but it must handle large time-varying forces reflected
from the object in order to maintain balance. This section
introduces two challenges that modeling addresses: noise in
force sensor readings and the dependence of balance control
on future information.

The first challenge is common to many robot systems.
Figure 2(a) shows the noise in force sensor readings from
the robot hands during whole-body manipulation. While high
frequency forces have no significant impact on balance, the
low frequency force response must be compensated. The
complication is that online filtering introduces a time delay
of up to 500 ms for noise free data as shown in Figure 2(b).
Modeling gives us the force estimate in Figure 3(b), a low
frequency response without time delay.

For balancing robots such as humanoids, we not only require
accurate estimates of current state but also of future forces.
Typically, a balance criterion such as center of pressure loca-
tion (ZMP) is achieved by commanding a smooth trajectory
for the robot COM. [5] demonstrates that accurate positioning
of ZMP requires up to two seconds of future information about
its placement. Since external forces at the hands create torques
that affect the ZMP, they should be taken into account two
seconds earlier, during trajectory generation.

In summary, the purpose of modeling is to use known
information such as the target object trajectory to accurately
predict its low frequency force response in advance. The
predicted response is used to generate a smooth trajectory for
the robot COM that satisfies the desired ZMP.

IV. MODELING METHOD

Environment objects vary in kinematics, dynamics, compli-
ance and friction. The tables and chairs used in our experi-
ments are on casters. Each caster has joints for wheel orien-
tation and motion. Among other properties, object dynamics
depend on wheel orientation. Currently, we do not have a
perception system that can detect and interpret this level of
detail. We approach modeling from the perspective of finding
a simple and effective strategy that maps an object trajectory
to a predicted force response.

Despite the complex kinematic structure of a humanoid
robot, the robot is often modeled as a point mass attached
to the stance foot with prismatic joints. Likewise, an object
can be modeled as a point mass in Eq. 1. Given experimental
data we can compute the mass and friction for an object and
use them to predict force. However, due to uncertainty in
caster orientation and the low velocities of manipulation our
experiments did not result in a consistent relationship between
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Fig. 2. (a) shows two degrees of online filtering. (b) Notice the time
delay of low-pass filtering and the error window for preview control.
(c) Forces predicted by our model.

acceleration and force. Consequently we chose to base our
model solely on viscous friction as given in Eq. 2.

f t = mo ẍt
o + c ẋt

o (1)
f t = c ẋt

o (2)

To find c that satisfies this relationship we applied least squares
regression on collected data. We executed a trajectory that
displaced the object at distinct velocities, ẋt

o, and measured
the force at HRP-2s hands, f t, at millisecond intervals. The
collected data was represented in Eq. 3. The term b was used to
remove bias which appeared as a constant force offset allowed
by impedance control after grasp.[

ẋ1 ẋ2 · · · ẋn

1 1 · · · 1

]T [
c
b

]
=

[
f1 f2 · · · fn

]T
(3)

The solution to this set of over-constrained equations is found
simply by applying the right pseudo-inverse. During data col-
lection we used a reactive balancing strategy which assumed
a constant force response during a .15s trajectory cycle. This
approach was sufficiently stable for brief interactions.

V. IMPLEMENTATION DETAILS

Section IV gave an overview of the method applied in this
paper. We now expand on the control strategy for whole body
manipulation that takes into account the object model. The
controller consists of three significant elements:
• Decoupling the object and robot centers of mass.
• Trajectory generation satisfying ZMP and object motion.
• Online feedback for balance and compliance.
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Fig. 3. Model of the robot and object used in our work.

Instantiating these three components lifts control from the
30 dimensional space of robot joints to a higher level of
abstraction: a system that realizes a single object trajectory.

A. Decoupled Positioning

At the highest level, we represent the manipulation task as a
system of two bodies. The object, o, and robot, r, are attached
by horizontal prismatic joints to a grounded stance foot. The
stance foot position changes in discrete steps at a constant rate
k = 900ms. Section V-B computes independent workspace
trajectories for xr and xo. To implement this abstraction we
describe how workspace trajectories map to joint space.

We start the mapping by defining the trajectories for hands
and feet relative to the object. Due to rigid grasp manipula-
tion, the hand positions, plh and plr remain at their initial
displacements from xo. For simpler analysis, the stance foot
pst is fixed relative to xo at each impact. The robot swing
foot, psw follows a cubic spline connecting its prior and future
stance positions. 1

We also fix the trajectory for the robot torso, ptorso relative
to xr. Although the center of mass position, xr, is a function
of all the robot links we assume that xr remains fixed to ptorso

after grasp. This assumption is relaxed in Section V-B through
iterative controller optimization. Notice that although many
of the link positions are highly coupled, the two positions of
interest xr and xo are not.

Suppose we have workspace trajectories for both xo and
xr. The former specifies trajectories for hands and feet and
the latter defines xtorso. Joint values that position the four
ungrounded links are found with resolved rate control [20]. We
solve inverse kinematics for angles in four kinematic chains:

pst → xr 6 Stance leg xr → plh 7 L arm
xr → psw 6 Swing leg xr → prh 7 R arm

These solutions complete the mapping from any valid
workspace placement of xr and xo to robot joints.

In all the applications of inverse kinematics we use analyti-
cal solutions to expedite calculations and avoid drift. The two
chest joint values are constants that maximize the workspace.
Redundancy in the arms is resolved by fixing elbow rotation
about the line connecting the wrist and shoulder.

1To achieve a fixed displacement from the object on each step, the object
velocity is bounded by the maximum stride length and step rate. We restrict
the values of ẋo in advance.

B. Trajectory Generation

Section V-A gave a mapping from commanded workspace
positions of xr and xo to joint positions. We now focus on
workspace control. Given a commanded trajectory for xo we
compute a trajectory for xr that satisfies balance constraints.

We define balance by relating the zero moment point to
stance foot position. Let x be the direction of object motion.
zo is the height of the hands and f is the reflected force. Eq. 4
introduces zmp as the ground point around which the torques
due to gravity acting on xr, reflected force from accelerating
xr and reflected force from the object sum to zero.

τzmp = mrg(xr − zmp)−mrẍrzr − zof = 0 (4)

Solving for zmp yields:

zmp = xr − ẍr
zr

g
− zof

mrg
. (5)

Dynamic balance requires zmp to remain in the robot support
polygon. To maximize error tolerance we seek a trajectory
that minimizes the distance between zmp and the stance foot
center zmpd = xst. Recall that xst, and thus zmpd are known
given a trajectory for xo. (S.V-A)

Let J0 =
∑

t(zmpt
d−zmpt)2 be the performance index for

balance. Eq. 6 further defines β and βd as functions of zmpd

and xr respectively.

βd = zmpd +
zof

mrg
β = xr − ẍr

zr

g
(6)

Substitution yields J0 =
∑

t(β
t
d − βt)2. Notice that zmpd

is the trajectory of foot centers and {zo,mr, g} are constants.
Hence assuming that f is known, the trajectory of future values
for βd is fully determined.

Suppose we interpret β as the observation of a simple linear
system in xr with the input

...
xr. For smoothness, we add

squared input change to the performance index.

J =
∞∑

t=1

Qe(βt − βt
d)

2 + R(
...
xt − ...

xt−1)2 (7)

We can now determine the optimal
...
xr with preview control

[5]. At any time t we know the error e(t) = βt − βt
d, state

x(t) = [ xt
r ẋt

r ẍt
r ]T and N future βi

d. Preview control finds
the gains G1, G2 and G3 such that the incremental control in
Eq. 8 minimizes J .

∆
...
xt

r = −G1e(t)−G2∆xt
r −

N∑
i=1

Gi
3(β

t+i
d − βt+i−1

d ) (8)

More is available in Appendix B of [21] summarizing [22].
The control ∆

...
xr is discretely integrated to generate the

trajectory {ẍr, ẋr and xr} for xr. The trajectory for yr is
found by direct application of preview control since the object
reflects no forces tangent to x.

Since xr is assumed to be fixed to the robot torso, the
generated joint space trajectory still results in zmp tracking
error. We incorporate this error into the reference trajectory
and iterate optimization.
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Fig. 4. Executed trajectory using the model-based approach with a 55kg loaded table. The robot pushes then pulls the table.

C. Online Feedback
Section V-B described the generation of a balanced trajec-

tory for xr given xo. To handle online errors we modify these
trajectories online prior to realization with robot joints. Online
feedback operates at a 1ms cycle rate.

Accumulated ZMP tracking error can lead to instability over
the course of execution. Therefore, a proportional controller
modifies the acceleration of xr to compensate for ZMP
errors perceived through the force sensors at the feet. These
corrections are discretely integrated to achieve xr position.

The trajectory for xo, or the robot hands, is modified by
impedance. We use a discrete implementation of the virtual
dynamic system in Eq. 9 to compute the offset for xo that
results from integrating the measured force error F .

F = miẍo + diẋo + ki(xo − xd
o) (9)

Impedance serves two goals. First of all, we ensure that hand
positioning errors do not lead to large forces pushing down on
the object. Since the robot does not use the object for support,
di and ki are set low for the z direction.

Second, we prevent the robot from exceeding torque limits
when the trajectory cannot be executed due to large reflected
forces or un-modeled dynamics. The position gain for the x
direction trades a displacement of 10cm for a 100N steady
state force. This allows for precise trajectory following and
soft termination when the trajectory offset exceeds force limits.

VI. EXPERIMENTS AND RESULTS

We conducted experiments on model-based whole body
manipulation using a loaded table on casters, as shown in
Figure 4 and 8. The robot grasped the table and followed a
smooth trajectory for xo as generated from a joystick input.

Our results were compared to a rigid grasp implementation
of a reactive approach to handling external forces presented in
[8], which assumed that sensed forces would remain constant.
Both methods recomputed the trajectory for xr every 150ms,
at which time the reactive strategy updated its estimated force.

The reactive method was applied first to gather data and
learn an object model from Section IV. Brief experiments of
less than 10s we necessary to collect the data. We applied both
methods on a series of experiments that included a change of
load such that the total mass ranged from 30kg to 55kg.

A. Prediction Accuracy
First, we look at how well our model predicts force. The

comparisons in this subsection use data from experiments that

are not used to build the model. The comparison in Table
I shows that the mean squared error between modeled and
measured force is lower than the error of assuming that force
remains constant during the control cycle.

Since preview control takes into account future βd, in-
cluding predicted force, next we propose a more accurate
prediction measure. Let βd reflect the difference in predicted
and actual force. Preview control is applied to find a trajectory
that compensates for the simulated error. It generates an
erroneous xr displacement, xPC

err , during the 150ms that the
trajectory is active. xPC

err is the expected trajectory error given
the error in force prediction.

The comparison between the expected trajectory error,
shown in Figure 6 and Table I, also favors the model based
method. xPC

err decreases if we assume a faster control cycle.
However, even for a 20ms cycle, we found that error decreases
proportionally for both controllers and the ratio of their MSE
remains in favor of modeling.

B. System Stability
The accuracy of prediction has significant effect on the

overall stability of the controlled system. Incorrect predictions
affect the trajectories for xr and xo. First consider the resulting
ZMP of the robot. While both controllers exhibit a slight offset
in ZMP from grasping the object, the constant error can be
removed with integral or adaptive control. A greater concern
is the variance in this error. Figure 7 shows the increased noise
in the control signal for ZMP when using the reactive control.
Table II summarizes this effect.

An even clearer distinction between the two methods is
directly reflected in the noise of the perceived force data. Table
II also shows the variance in the noise given the off-line filtered
signal. The difference in noise is clearly seen in Figure 5.

C. Summary
Our experiments show a significant improvement both in

prediction accuracy and system stability when using the
learned object model for control. One of the most convincing
results is the accurate force prediction for a 55kg object in
Figure 5(d). Also notice the low noise variance in sensed
forces when using the model based controller.

We also evaluated the performance of the system with an
inaccurate model. Due to online balance compensation and
impedance it was possible to manipulate the 55kg table using
the 30kg feed-forward model. However, as seen in Figure 9,
the impedance controller saturates at the object force and the
zmp error error grows significantly.
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Fig. 5. (a,c) show forces during reactive manipulation. (b,c) use
model-based method and reduce variance in experienced force.

VII. CONCLUSION

In this paper we have shown that it is possible to reliably
manipulate unknown, large, heavy objects such as tables along
specified trajectories with existing humanoid robots. We found
that simple statistical methods such as least squares regression
can be used to learn a dynamic model for the unknown object
and use it to improve balance during manipulation.

Our estimated model of viscous friction was compared to
a reactive method which assumed that forces would remain
constant. Learning models proved to yield better prediction of
forces and increase balance stability when used during whole
body manipulation.

In future work, we are interested in merging the feed-
forward model with feedback information. State estimators
such as Kalman filters can be used to maximize the per-
formance of the robot by combining information sources.
Furthermore, adaptive control techniques could be applied in
handling online changes to friction and mass.
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Fig. 6. Trajectory error introduced by preview control with erroneous
prediction. Computed for each active trajectory period
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Fig. 7. Realized ZMP for identical reference trajectories. Plots are
position shifted to show greater variance in reactive approach.

TABLE I
AVERAGE PREDICTION ACCURACY

MSE Ferr(N) MSE xPC
err (m)

model react model react
30kg 4.44 9.19 .427 .674
55kg 5.21 12.5 .523 .971

TABLE II
SYSTEM STABILITY

ZMP SD (m) Force SD (N)
model react model react

30kg .0214 .0312 11.06 15.79
55kg .0231 .0312 12.15 46.25
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