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Abstract— Optimizing the control of articulated mobile
robots leads to emergent behaviors that improve the effec-
tiveness, efficiency and stability of wheeled humanoids and
dynamically stable mobile manipulators. Our simulated re-
sults show that optimization over the target pose, height and
control parameters results in effective strategies for standing,
acceleration and deceleration. These strategies improve system
performance by orders of magnitude over existing controllers.
This paper presents a simple controller for robot motion and
an optimization method for choosing its parameters. By using
whole-body articulation, we achieve new skills such as standing
and unprecedented levels of performance for acceleration and
deceleration of the robot base. We describe a new control
architecture, present a method for optimization, and illustrate
its functionality through two distinct methods of simulation.

I. INTRODUCTION

Wheeled humanoids and mobile manipulators have become a
compelling alternative to bipedal robots due to the potential
for increased stability and safety in human environments.
Many wheeled humanoids use a wide base of support and
rely on static stability [1]–[4]. Others, such as the UBot
[5], Robonaut [6] and BallBot [7] contact the ground with
only two wheels or a ball. The latter systems are simi-
lar to bipedal humanoids since they use active control to
achieve dynamic balance. Dynamic stability requires greater
complexity in control, yet it also yields greater robot ca-
pabilities. For instance: (1) Balancing robots require very
small support regions; (2) They can use their own mass
to generate lever arms and achieve greater manipulation
forces; (3) They typically achieve higher velocities which
relate to greater momentum when interacting with the world.
For quasi-static interactions, Thibodeau [8] showed that a
balancing manipulator can achieve greater static forces when
interacting with environment objects. We go beyond statics
to show the dynamic advantages of articulated balancing
robots. This paper presents three simple robot tasks: standing,
acceleration and deceleration. In each case our methods use
system dynamics to increase robot performance and stability.

Consider the robot Golem Krang in Fig. 1, currently
under construction in our lab. The robot uses Schunk ro-
tary modules for arms and a three-DOF torso. The waist
joint can be controlled to tilt the entire upper torso with
respect to the wheels. Due to upper body articulation, this
robot will be able to sit, stand, and perform human-scale
manipulation. We now show that the robot will also use joint
articulation to increase its performance during navigation.
For clarity, we focus on the torso pitch joint and its effects
on dynamic balance. We model the system as a planar
mechanism consisting of two massive links connected by
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Fig. 1. Dynamically stable, articulated mobile manipulator in construction
at the Humanoid Robotics Lab at Georgia Tech. We show how such a system
can use upper body articulation to improve performance and stability.

a revolute joint. The lower link connects to a wheel with
sufficient ground friction to maintain no-slip contact. Using
this model, we demonstrate that articulated dynamic balance
yields improved performance in navigation and naturally
leads to human-like emergent behaviors.

In this paper, we first present a novel workspace controller
for maintaining robot balance and placing the robot arms at a
desired height. Second, we introduce an optimization strategy
for choosing controller gains as well as robot height in order
to maximize system performance. Optimization not only
leads to increased performance, but also generates exciting
results in robot behavior that can only be achieved with an
articulated system.

II. RELATED WORK

Numerous mobile manipulation platforms such as [5], [6],
and [9] add upper body articulation to a dynamically stable
wheeled base. However, typically these systems do not take
advantage of the articulated links to improve navigation and
balance. In contrast, work on bipedal humanoids, [10]–[12]
has recently focused on the use of whole body articulation to
improve balance and performance. For wheeled humanoids,
[5] described a system that achieved greater static forces by
leaning into objects. To our knowledge, no existing wheeled
articulated platform has used its ability to move internal
masses in order to increase its dynamic performance. We
combine feedback linearization from classical control with
numerical optimization to achieve this goal.

In contrast to bipedal platforms, a wheeled mobile manip-
ulator is an underactuated system with only two points of
ground contact at the wheels. Classical control of underactu-
ated mechanical systems has focused on low dimensional
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models such as the cart-pole inverted pendulum, Furuta
pendulum, inertia wheel pendulum, convey-crane system,
ball and beam system, and the pendubot / acrobot which are
well described in [13]. The most similar models to our work
are the studies presented in [14], [15], and [16]. However,
none of these combine the dynamics of base motion with
upper body articulation.

While it is well-known that underactuated systems are
not feedback linearizable, [17] showed that linearization can
be done around the active or passive joints, referred to as
collocated and non-collocated partial feedback linearization
(PFL). Extensions proposed energy and passivity-based con-
trols which regulate the energy of the system to some desired
equilibrium point [18]–[20]. For these methods, stability
guarantees were based on assumptions about system proper-
ties that do not directly translate to articulated mobile robots.
Less restrictive strategies utilized switching and saturation
[21] in the domain of hybrid systems. However, hybrid
approaches often operate at the supervisory level, making
them challenging to generalize or prove stability.

In contrast to classical methods, research in optimal con-
trol and reinforcement learning [22, 23] has applied numeri-
cal optimization to generating controllers over the entire sys-
tem state space. Simple optimization over a discretized high-
dimensional state space such as ours requires computation
times that are currently infeasible. To mitigate complexity,
researchers have applied variable resolutions [24], locally
weighted models [25], and state space sampling [26]. Others
have directly represented the best actions using quadratic
programming [27], LQR [28], and optimized trajectories
[29]. Presently, such techniques have not been applied to
articulated wheeled robots.

This paper combines classical feedback linearization with
optimization. Feedback linearization allows the system to
respond appropriately through a wide range of the state space
given a simple PD controller. The gains and targets for the
controller are chosen to optimally satisfy the desired criteria.

III. CONTROL DESIGN

This section presents a simple controller that achieves three
objectives: desired robot height, absolute position/velocity
and relative position/velocity of the center of mass (CM).
We augment the system dynamics equations with control
equations that dictate the workspace accelerations of the
wheel and the CM of the upper link. We use state feedback
to linearize the entire system and compute torques by matrix
inversion. This method can be thought of as a simple exten-
sion of computed torque for articulated robots. We developed
it as a simple and intuitive alternative to partial feedback
linearization [17].

A. Dynamics

First, we derive the system dynamics by the Lagrangian
approach. The model parameters are shown in Fig. 2 and
Table I. In accordance with general robot systems, the
equations can be simplified to the following form that is
linear in acceleration and torque. T represents torques while
M and N are state-dependent matrices, such that M consists
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Fig. 2. Dynamic models of our system. (a) Planar dynamics used
for optimization. (b) 3D dynamics used in srLib simulations.

TABLE I
PHYSICAL PARAMETERS

m (kg) r (m) Iz (kg·m2) ` (m)
Wheel (l1) 12 .23 .166 .23
Link 2 (l2) 67.8 .15 1.4 .51
Link 3 (l3) 60.0 .8 3.0 -

of coefficients on acceleration and N consists of all other
terms including centripetal, coriolis and gravitational forces.

M(q)q̈ + N(q, q̇) = T (1)

In our case, this is a system of three equations with q2, the
absolute angle of the lower link, q1, the relative angle of the
wheel and q3, the relative angle of the upper link. Notice that
one of the equations has 0 instead of torque. This is indicative
of an underactuated system since only wheel torque, τ1, and
joint torque, τ3, can be controlled.m11 m12 m13

m21 m22 m23

m31 m32 m33

q̈1q̈2
q̈3

+

n1

n2

n3

 =

τ10
τ3

 (2)

This is a linear system of three equations with five unknowns.
We can therefore add two equations to fully constrain the
system. The next section shows that these two equations can
be used to control the system.

B. Controller Design

Our controller adds to the system dynamics to stabilize the
system around a desired equilibrium. First, we augment the
system of equation in Eq. 2 with two more equations that
are linear in acceleration. We define the matrices W, V and
S:

W =


m11 m12 m13

m21 m22 m23

m31 m32 m33

w41 w42 w43

w51 w52 w53

V =


n1

n2

n3

v4
v5

 and S =


τ1
0
τ3
s4
s5

 (3)

such that,
W(q)q̈ + V(q, q̇) = S. (4)

We now choose two simple PD control laws for the remain-
ing equations. First, we would like to place the CM of the



upper link at a desired height yd
3 , achieving a position for

the robot arms. The position of y3 is simply:

y3 = r1 + l2 cos(q2) + r3 cos(q2 + q3) (5)

To find the acceleration of y3, we compute the second
derivative of Eq. 5 with respect to time. This gives a linear
equation in q̈1, q̈2 and q̈3 with some additional terms, v4, due
to velocity. We now let s4 be a simple PD controller for the
height of the upper link center of mass.

ÿ3 = w41q̈1 + w42q̈2 + w43q̈3 + v4 = s4 (6)

s4 = k1(yd
3 − y3) + k2(ẏd

3 − ẏ3) (7)

Following this design method, we construct the second
control equation to achieve robot balance and positioning.
Initially we considered direct control over the robot CM,
however we found it to have an unintuitive relationship to
balance since the wheel must be accelerated in the direction
opposite to the motion of the CM. Instead, we chose to
control the absolute wheel axle acceleration ẍw directly. Both
methods proved to be equally effective with very similar
gains. For the case of wheel acceleration, we compute wheel
position, relative and absolute robot CM position as follows:

xw = r1(q1 + q2) (8)

xr
cm =

m2r2 sin(q2) + m3(l2 sin(q2) + r3 sin(q2 + q3))

m2 + m3
(9)

xa
cm = xw + xr

cm (10)

Differentiating xw with respect to time and choosing an ap-
propriate control law yields a simple set of linear equations.

ẍw = w51q̈1 + w52q̈2 + w53q̈3 + v5 = s5 (11)

s5 = k3(x
rd
cm − xr

cm) + k4(ẋ
rd
cm − ẋr

cm)+

k5(x
ad
cm − xa

cm) + k6(ẋ
ad
cm − ẋa

cm) (12)

Given current state information, Eq. 6-7 and Eq. 11-12
complete Eq. 4 such that we simply have five linear equations
and five unknowns. Three of the equations are given by
system dynamics and two are decided by PD control.

C. Control

Given five equations and five unknowns (q̈1, q̈2, q̈3, τ1, τ3)
we can solve the system to find the accelerations of all the
joints and more importantly the torques that achieve them.
First, we separate S into S = S1 + S2.

S1 =
[
τ1 0 τ3 0 0

]T
S2 =

[
0 0 0 s4 s5

]T
Two matrix subtractions in Eq. 4 yield:

Wq̈− S1 = S2 −V

which is trivially rearranged into the following form:
m11 m12 m13 −1 0
m21 m22 m23 0 0
m31 m32 m33 0 −1
w41 w42 w43 0 0
w51 w52 w53 0 0



q̈1
q̈2
q̈3
τ1
τ3

 =


0− n1

0− n2

0− n3

s4 − v4
s5 − v5



Inverting the augmented W matrix results in the desired
solution for accelerations and torques. We directly apply the
torques to our system.

IV. PERFORMANCE OPTIMIZATION

A. Overview

The proposed simple workspace controller achieves a stable
closed-loop system over a broad space of gains and param-
eters. However, performance is difficult to characterize and
it is unclear how to compute a set of control actions that
minimize some predefined cost. Traditionally, this problem
can be addressed using optimal control, but doing so would
require a complete reformulation of the controller which is
difficult due to the constrained and nonlinear nature of our
system. Instead, we focus on framing the optimization on
top of the existing controller, keeping the same structural
design but varying the controller gains through stochastic
optimization for performance improvements.

We selected a particular optimization tool called Particle
Swarm Optimization (PSO) [30], a stochastic, population-
based evolutionary computing technique inspired by the
paradigm of social interaction. PSO relies on the trajectories
of a group of potential solutions called ”particles”, which
traverses the solution space simultaneously to search for
extrema points. Unlike traditional optimization algorithms
that rely on gradient information, PSO do not explicitly
compute the gradient but rather estimate the search direction
through interactions with neighboring particles. At each
time instance, a fitness function evaluates the quality of the
solutions obtained by each particle and the value is shared
across neighboring particles. The particles are attracted to
its own best solution as well as the group’s best solution,
and over time, the group as a whole is drawn stochastically
towards the global optimum.

Previously, we have successfully applied PSO in a state
feedback design for a helicopter stabilization problem [31].
The merits of PSO lie in its ability to quickly converge to
globally optimal solutions, even in large and non-convex
solution spaces. The lack of dependence on gradients by-
passes a computationally expensive process, especially for a
complex and highly nonlinear model such as ours. The use
of multiple particles ensures that the algorithm is not easily
trapped in local minima, which can also be easily parallelized
in future applications that require greater speed.

B. Formulation

We seek a set of controller gains k1 . . . k6 defined in Eq. 7
and Eq. 12 as well as the CM height yd

3 and desired absolute
CM position xad

cm that minimize some cost function J. J is
defined for three scenarios:

1) Stand up: from a sit down position, stand up while
minimizing translation and control effort

2) Acceleration: in a standing pose, accelerate to achieve
a positive velocity as quickly as possible

3) Deceleration: traveling at some positive velocity, de-
celerate to stop as quickly as possible

In the fitness function, the dynamics of the system are sim-
ulated for T seconds and the resulting outputs are evaluated



based on J. The costs are:

Jstand = αmax(|q1|) + β

T∑
0

u∆t (13)

Jacceleration = αst(q̇1) + β

T∑
0

u∆t (14)

Jdeceleration = αst(q̇1) + β

T∑
0

u∆t (15)

where st(·) is the settling time for the given state and α, β
are constant weights.

Using PSO, the controller parameters under consideration
are encoded within particles, with appropriate restrictions
placed as boundaries for the search space. Five particles are
used in the search, initialized randomly within the search
space. The algorithm iterates for a fixed number of iterations
and returns the best solution found.

V. EXPERIMENTS AND RESULTS

We evaluated the performance of our optimized controller
relative to a set of hand tuned gains. Experiments were
conducted on both a planar model in Matlab and a 3D model
using srLib dynamic simulation. For standing, acceleration
and deceleration, we observed significant improvement in
translation, settling time and energy respectively. These
results are summarized in Table II. Furthermore, since the
optimizer could vary both robot height and target center
of mass, we observed new behaviors that were generated
automatically from optimized motion.

A. Acceleration

In order to make the robot accelerate, we give the controller
a non-zero reference velocity for the absolute center of
mass, ẋad

cm = .5m/s. Both the hand tuned gains and the
parameters selected by optimization achieve this velocity
starting from zero and track it. However, as seen in Fig. 3,
the optimized controller reaches the target velocity in less
than half the time. As shown in the accompanying video, the
tuned controller continued to oscillate while the optimized
gains result in a gradual, smooth change to the velocity. This
final traces of optimized control are given in Fig. 3(c).

B. Standing Up

We designed our robot with the capability to sit and stand,
allowing it to achieve a statically stable sitting configuration

TABLE II
PERFORMANCE OPTIMIZATION

Max Translation Energy
Original Stand up 16.64 92407

Optimized Stand up 3.24 107450
Settling Time Energy

Original Acceleration 4.68 80076
Optimized Acceleration 2.26 82739

Original Deceleration (Sit) 4.82 180580
Optimized Deceleration (Sit) 2.37 178250

Optimized Deceleration (Stand) 2.16 86305
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(c) Simulated execution of optimized controller.

Fig. 3. Acceleration: optimized control operates faster with less oscillation.

yet also use dynamic balance for complex dynamic tasks.
Setting the initial angles in the range of ±100 makes the
robot take a sitting position. From this pose, we set a target
height for the second link of y3 = 1.2m. As shown in
Fig. 4, the optimized controller significantly outperformed
our choice of parameters. The controller showed almost no
oscillation and the simulated robot nearly stood in place.

Standing also showed the first emergent behavior of our
two-link system. Not only does the robot unfold its torso,
but it first slides the wheels back approximately 50cm and
then lifts the torso to stabilize at the desired setpoint.

C. Deceleration

The most interesting robot behaviors were observed in de-
celeration. Just as with acceleration, we simply set the target
velocity to ẋad

cm = 0m/s. As shown in Fig. 7, while our
original gains did stop the robot, it took a significant amount
of time to settle. Such a slow deceleration would not be
sufficient to prevent the robot from experiencing or causing
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(a) Control prior to optimization.
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(b) Control after optimization.

Fig. 4. Stand Up Controller: optimization leads to a smoother controller which nearly makes the robot stand in place.

hazardous situations. The optimizer was asked to select the
remaining parameters, including the gains, the height of the
upper link and the target mass position. Not only did it
find significantly safer solutions for deceleration, but also
generated two distinct behaviors.

On separate runs of optimization, the particles settled on
distinct local minima. In one case, the robot found that
lowering the upper link, y3 required lower gains and gave a
much faster settling time. We attribute this to the increased
sensitivity of our balancing system when it has a lower center
of mass. On a different run, optimization found a desirable
absolute robot position, xad

cm, and placed a high gain, k3,
on achieving it. The robot moves the wheels forward and
leans back in order to stop. These two new behaviors are
demonstrated in Fig. 5 and Fig. 6.

VI. DISCUSSION

In this paper, we presented a controller that generates whole
body motion for wheeled humanoids and mobile manipula-
tors. We also introduced an optimization strategy for choos-
ing control parameters. The combination of these simple
elements led to stable motion in a number of simulated tasks:
standing, acceleration and deceleration. The most interesting
result was the set of emergent behaviors such as leaning and
sitting that emerged from optimizing task performance.

Upon completion of our wheeled humanoid robot, we
will validate this controller on a real robot platform. We
have individually tested the balancing capabilities of the
base, validated the model parameters and ensured that our
torso actuators are capable of producing the required torques.
Future work on this topic will extend the controller to include
the robot arms. We will also consider optimization over
trajectories to generate more complex body motions that
handle both obstacle avoidance and physical interactions.

REFERENCES

[1] D. Katz, E. Horrell, Y. Yang, B. Burns, T. Buckley, A. Grishkan,
V. Zhylkovskyy, O. Brock, and E. Learned-Miller, “The UMass mobile

manipulator uMan: An experimental platform for autonomous mobile
manipulation,” in Workshop on Manipulation in Human Environments
at Robotics: Science and Systems, 2006.

[2] F. Zacharias, C. Borst, M. Beetz, and G. Hirzinger, “Positioning mobile
manipulators to perform constrained linear trajectories,” in Intelligent
Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Con-
ference on, Sept. 2008, pp. 2578–2584.

[3] C. Borst, T. Wimbock, F. Schmidt, M. Fuchs, B. Brunner, F. Zacharias,
P. R. Giordano, R. Konietschke, W. Sepp, S. Fuchs, C. Rink, A. Albu-
Schaffer, and G. Hirzinger, “Rollin’ Justin - mobile platform with
variable base,” in Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, May 2009, pp. 1597–1598.

[4] T. Inamura, K. Okada, S. Tokutsu, N. Hatao, M. Inaba, and H. Inoue,
“HRP-2W: A humanoid platform for research on support behavior in
daily life environments,” Robotics and Autonomous Systems, 2008.

[5] P. Deegan, B. Thibodeau, and R. Grupen, “Designing a self-stabilizing
robot For dynamic mobile manipulation,” in Robotics: Science and
Systems-Workshop on Manipulation for Human Environments, 2006.

[6] R. Ambrose, H. Aldridge, R. Askew, R. Burridge, W. Bluethmann,
M. Diftler, C. Lovchik, D. Magruder, and F. Rehnmark, “Robonaut:
Nasa’s space humanoid,” Intelligent Systems and their Applications,
IEEE, vol. 15, no. 4, pp. 57–63, Jul/Aug 2000.

[7] T. Lauwers, G. Kantor, and R. Hollis, “A dynamically stable single-
wheeled mobile robot with inverse mouse-ball drive,” in Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, May 2006, pp. 2884–2889.

[8] B. Thibodeau, P. Deegan, and R. Grupen, “Static analysis of contact
forces with a mobile manipulator,” in Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conference on, May
2006, pp. 4007–4012.

[9] P. Abeygunawardhana and M. Toshiyuki, “Stability improvement of
two wheel mobile manipulator by real time gain control technique,”
in Industrial and Information Systems, 2007. ICIIS 2007. International
Conference on, Aug. 2007, pp. 79–84.

[10] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Robotics and Automation, 2003.
Proceedings. ICRA ’03. IEEE International Conference on, vol. 2,
Sept. 2003, pp. 1620–1626 vol.2.

[11] K. Nishiwaki, S. Kagami, Y. Kuniyoshi, M. Inaba, and H. Inoue, “On-
line generation of humanoid walking motion based on a fast generation
method of motion pattern that follows desired zmp,” in Intelligent
Robots and Systems, 2002. IEEE/RSJ International Conference on,
vol. 3, 2002, pp. 2684–2689 vol.3.

[12] K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, K. Yokoi,
and H. Hirukawa, “Real-time planning of humanoid robot’s gait for
force-controlled manipulation,” Mechatronics, IEEE/ASME Transac-
tions on, vol. 12, no. 1, pp. 53–62, Feb. 2007.



0s 0.6s 3.2s

(a) Optimizer chooses to lean back for deceleration.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−50

0

50

100

150

200

time

jo
in

t a
ng

le
 (

de
g)

 

 
q

1
 position q

2
 position q

3
 position

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−600

−400

−200

0

200

400

time

to
rq

ue
 (

N
m

)

 

 
τ
1

τ
2

τ
3

(b) Traces of simulated execution.

Fig. 5. Deceleration 1: Leaning behavior emerges from optimization.
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Fig. 6. Deceleration 2: Sitting behavior emerges from optimization.
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