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Abstract— We explore the use of computational optimal
control techniques for automated construction of policies
in complex dynamic environments. Our implementation of
dynamic programming is performed in a reduced dimensional
subspace of a simulated four-DOF biped robot with point
feet. We show that a computed solution to this problem can
be generated and yield empirically stable walking that can
handle various types of disturbances.

Index Terms— dimensionality reduction, dynamic program-
ming, biped locomotion

I. INTRODUCTION

Our goal is to apply optimal control techniques that
compute a policy for complex nonlinear systems. In this
paper we focus on dynamic programming (DP) [20] [7].
Such techniques complement trajectory optimization tech-
niques and can help avoid the poor local optima that make
application of trajectory optimization difficult [13]. They
also enable the use of model-based reinforcement learning,
which will allow us to handle situations with uncertain
models. In practical implementations we expect to refine
the limit cycles that result from our computed policies
using trajectory optimization techniques such as DIRCOL
[19], and to evaluate the policy around the trajectory for
local stability.

Previously, DP and related methods were implemented
on small scale problems due to insufficient computational
resources. In this work we strive to show that, under
appropriate state space decomposition and model reduction,
DP can currently be applied to significantly larger scale
domains. Task subdivision is not uncommon in the domain
of biped locomotion. [16] used a functional decomposition
with separate controllers for speed, altitude and attitude.
[3], [21] solve the locomotion problem analytically by
formulating virtual constraints and mapping to a two di-
mensional submanifold. From a computational perspective,
we map to low dimensional subspaces in order to increase
the resolution of the state space grid under the constraints
of memory and processing time.

In this paper, we manually perform a temporal decom-
position of the problem into phases of single and double
support (SS,DS). We show that DS on level ground can then
be modeled fully and introduce a further model reduction
of SS. The state space and model components are joined
by mapping and the optimal policy is computed iteratively
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Fig. 1. The real biped with boom and planar model used in our work.
The biped has point feet and no upper body.

over the entire represented state space. The reductions
performed are intended to be intuitive and illustrative of the
practical effectiveness of DP through visual representations
and empirical results.

Our future work will involve the application of reduced
order modeling such as proper orthogonal decomposition
[12] and truncated-balanced realization [15]. This will al-
low us to enforce stability constraints and prove robustness
bounds for the computational methodology.

II. STATE INCREMENT DYNAMIC PROGRAMMING

A. Foundations

Our algorithm is a practical extension to grid-based,
state-increment dynamic programming (DP). A typical DP
problem consists of the triple (S,U , C[x(t), u(t), t]).
S represents the state space.
U is the action space.
C is the cost, a function of the state and action at

each step.
For periodic tasks, such as walking, there is no goal state. In
our work, C is a weighted difference between the horizontal
torso velocity and a desired velocity, combined with an
action penalty. α is the weight and γ is a discount factor.

C[x(t), u(t), t] = α(ẋtorso − ẋdes)2 + u2 (1)

V (x) =
∞∑

k=1

γkC[x(t), u(t), t] (2)
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Our task is to find an optimal mapping from states to
actions, P(x), that minimizes V (x). The performance
criterion, V (x) is a value function representing the cost-
to-go from state x when following policy P .

B. Implementation

The state space of our robot is eight-dimensional,
(h1, h2, k1, k2, ḣ1, ḣ2, k̇1, k̇2). Due to the high dimension-
ality of the problem, we discretize S on a coarse grid. We
assume that the grid represents the portion of continuous
state space of interest. V (x) is evaluated by means of mul-
tilinear interpolation of corner values in the containing cell
[4]. In Section III we introduce a state space decomposition
that makes this approach tractable.

The optimal value function V(x) over S is then com-
puted iteratively. We evaluate a discrete set of actions from
each state according to the expected results of each action
in the system model f̂ . The action with minimum expected
return is selected. We repeatedly apply the following value
update, as derived from Bellman’s equation:

Vk+1(x) = min
u∈U

ε∑
t0

C[x(t), u(t), t] + γVk(f̂(x, u, ε)). (3)

In state-increment DP [7], the interval ε of action execution
is selected individually for each pair (x, u). It is defined
as the minimum time interval required for any of the state
indices to change by one increment. This ensures that V(x)
is computed from the neighborhood (in memory) of x,
while not using Vk(x) itself in the interpolation.

C. Illustrative Example

Before applying DP to the 8-dimensional space of our
biped, briefly consider a simpler problem. We fix the biped
knee and suspend the hip to create a simple pendulum. The
state space consists of the hip angle and velocity (θ, θ̇).
Suppose we want to keep the system at a constant energy
(i.e. swinging at the natural period). Let

E(θ, θ̇) =
1
2
Iθ̇2 −mgl cos θ, (4)

Cpend[s(t), u(t), t] = α(E − Edes)2 + u2, (5)

and f̂ be the dynamic forward simulation. Directly applying
the update rule (3), yields V(x) in less than a minute of
computation. Fig. 2 demonstrates the shape of V(x). For
each state, the associated policy P selects an action that is
expected to minimize V(x) in the following state.

The bottom of the elliptical valley in Fig. 2 is the limit
cycle for the pendulum task.

III. STATE SPACE CONSIDERATIONS

In the remainder of this paper, we relate the dynamically
complex task of walking to the example in Section II(C).
Unfortunately, representing and iterating over an eight
dimensional grid is currently too expensive. We decompose
the state space into a compact yet useful representation.

Our four-joint robot shares the periodic walking pattern
that is commonly associated with bipeds. The pattern
consists of two alternating phases: Double Support(DS) and
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(a) Traces of Convergence to the Limit Cycle
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Fig. 2. (a) Traced trajectories of DP controlled motion from various
points in the pendulum state space. (b) The pendulum value function
shows a valley at the limit cycle.

Single Support(SS). Since our algorithm takes into account
both phases of motion we observe the following:

• Due to the underactuated nature of the robot, the
successful completion of each phase relies highly on
the system state when it enters the phase. For instance,
when the robot enters single support, a minimal ve-
locity of the stance leg is required for the hip to pass
the stance foot. Likewise, after the swing foot makes
ground contact, the distance between the feet cannot
be changed throughout double support.

• There is an important distinction between the dynam-
ics of DS and SS. The additional contact point during
stance yields vastly different dynamic properties and
action responses. For instance, a PCA analysis of the
Jacobian for robot motion during SS would indicate
that the swing knee torques have relatively little effect



on the torso (COM) motion. Clearly, during DS, the
corresponding torques at the rear knee prescribe the
acceleration of the COM, thereby creating a push-off.

In developing a compact state-action representation we
seek features and actions that accurately approximate the
behavior of the system. Any state representation that re-
moves variables will be a slice in the state space. A useful
representation should largely be invariant to changes in the
excluded dimensions.

Though relevant features are not difficult to identify in
each phase, the inconsistent dynamics of the system yield
distinct selections of features that best represent DS and SS.
The same is true for choices of actions. This observation
points to the use of separate models and representations for
each phase. In the context of a periodic system, however,
DP cannot be applied separately to state space components.
We need to establish a mapping between the components
such that f̂ and therefore V (f̂(x, u, ε)) can be evaluated
during DS and SS transitions.

IV. STATE SPACE DECOMPOSITION AND REDUCTION

In this section, we detail our choices for state represen-
tation. An algorithmic procedure for making such choices
remains an open problem and an interesting subject for
future work.

A. Double Support: 5-Bar Linkage Reduction

Assuming a no-slip model of ground contact, with
constant step length (df ), we can represent the point foot
contacts with ground hinges (given appropriate restrictions
on velocity). As shown in Fig. 3(a) this model is equivalent
to a 5-bar linkage. Gruebler’s Equation indicates that the
system has 2 degrees of freedom [8]. In fact, the entire
system state can be described in terms of any two joints.
For reasons of range and clarity, we chose k1 and k2. The
remainder of the state can be resolved from the system
constraints.

Due to the no-slip model, df cannot vary within a single
pass through the DS phase and therefore adds no velocity
component. Still, dt may change after the robot completes
the SS phase. The full state for DS is therefore a 5-tuple
(df , k1, k2, k̇1, k̇2). The DS Value Table (10x16x16x12x12)
is used to model V (x) at the respective resolutions:
(.02m, .075rad, .075rad, 1.25 rad

s , 1.25 rad
s )/cell.

In the following subsection, we represent the state during
SS in terms of the hip-foot angles H1, H2. Equation (6)
demonstrates the mapping from the stance leg angles in
the DS model to those of the SS model. Analogously, we
map swing leg angles, and derive angular velocities from
the time derivatives of these equations.

H1 = h1 − arcsin(
lshin sin(k1)√

l2hip + l2shin + 2lhiplshin cos(k1)
)

(6)B. Single Support: Compass Reduction

The added constraint during DS allowed us to represent
the entire system state with only five variables. Though
this is not possible during SS, we choose a compact

(b) Compass 2-Link Model(a) 5-Bar Linkage Model
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Fig. 3. The two models used in our state space representation.

(k1, k2, k̇1, k̇2) df = 0

(k1, k2, k̇1, k̇2) df = 1

(k1, k2, k̇1, k̇2) df = dmax

. . .

(H1,H2, Ḣ1, Ḣ2)

Double Support Single Support

Fig. 4. Diagram of the decomposed state space. Since no actions directly
connect stance components with different dt, they are separated.

state representation that is common in biped walking: the
compass walker [5], [6], [9], [10], [18]. Our compass
model assumes that k1 and k2 are constant, yielding a
four-dimensional state space of hip angles and velocities
(H1,H2, Ḣ1, Ḣ2). In our representation H1 and H2 repre-
sent angles from the hip to the respective leg’s foot. The
SS value table (35x35x18x18) allows for resolutions of
(.046rad, .046rad, .50 rad

s , .83 rad
s )/cell.

The model excludes k1 and k2 for separate reasons. The
stance knee angle, k1, has a small range in human walking.

k2 on the other hand has a great deal of range. In
fact, the final position of k2 is directly related to df , the
distance between the feet on contact. In contrast to the rest
of the system, however, k2 is well-actuated. The motion
of k2 can be prescribed in accordance with h2 with little
effect on the motion of the robot’s COM or other system
components. Prescribing desired positions for k2, allows
df to be controlled.

In our work, df is a dominant factor in expressing
the preimage of the DS phase. The success of push-off
largely depends on a reasonable distance between the feet.
Though determining suitable distances was a task for our
planner, we ensure that the compass state representation
is sufficiently expressive in this dimension. In a transition
state, the compass state is trivially mapped to the DS model
as follows:

dt = l2 sin(H2)− l1 sin(H1). (7)

C. Complete State Space and Actions

The diagram in Fig. 4 represents the combined state
space resulting from our decomposition. The transition to
DS occurs when the swing leg makes contact with the
ground. The model transitions to SS when the rear foot
leaves the ground, violating a velocity constraint.



Transitions are a special case of motion in the state
space. Generally, all motion is defined by the model
x′ = f̂(x, u, ε), where u is an action applied for time
interval ε. In our formulation of dynamic programming,
actions are discretized torques for each joint within the
range of operation. We chose to discretize actions rather
than numerically optimize in the continuous space, because
doing so allows us to cache f̂ . Consequently, (3) can be
computed without additional model simulation.

The discrete action space U of the robot forms an
interesting contrast to the state space. In the case of SS,
our state is fully represented in terms of hip angles and
velocities H, Ḣ Since the robot cannot be actuated at the
feet, we are left with a one-dimensional U (a choice of hip
torque). This is no different from the acrobot domain [2].
We sample U in the range ±1.8Nm at .22Nm intervals
(17 actions).

In DS, however, the additional contact point adds sig-
nificantly to the potential for actuation. The hip and both
knee joints can accelerate the COM, yielding a three-
dimensional action space. In practice, we fix the hip action
to zero Nm to gain more significant resolution in knee
torques. The resulting action space is two dimensional
with each knee torque in the range (0, 5.4)Nm sampled
at .90Nm intervals (7x7 actions).

The entire model, f̂ has dimension equal to the prod-
uct of the state and action spaces. It therefore contains
398640× 49 + 396900× 17 = 24810660 cells.

V. RESULTS

A. Generated Policy

In order to compute a policy, we first constructed a
full planar simulation of the robot that defined f̂ . Ap-
plying the dynamic programming method of Section II
to the compact state space described in Section IV we
automatically generated a global value function and policy
in 11hr. of computation. Of these, 7hr. were dedicated
to model caching. The resulting value function exhibits
characteristics of convergence to a limit cycle similar to
those in Fig. 2(a). We can see the progressive stabilization
of several trajectories from different starting states to
periodic locomotion in Fig. 5(a).

In order to visualize progress towards the limit cycle,
consider Fig. 5(b-c). The shapes of slices in V(x) illustrate
some of the automatically detected features in the locomo-
tion space. Although this representation is simply a slice in
the space, the relative values of neighboring states indicate
preferable directions of motion. For instance, during push-
off, the rear leg extends (decreasing the angle k2) in
order to accelerate the center of mass. The robot enters a
singularity if the knee is fully extended. In Fig. 5(b), we see
that the preferred angular velocity (k̇2) shows substantial
increase as we approach the singularity. Experimentally, we
see that the policy selects states with larger knee angles and
smaller velocities. This corresponds to low values of V(x).

Fig. 5(c) yields analogous insight into swing. Clearly
for the stance leg (H1), position and velocity are inversely

related. Before the COM crosses the stance foot (H1 > 0),
the velocity (Ḣ1) must be negative. Notice the narrow range
of velocities handled by the policy in the vicinity of H1 =
0. Other slices of V(H1,H2, Ḣ1, Ḣ2) that vary (H2, Ḣ2)
exhibit the same narrow range. DP finds that no actions
can significantly adjust Ḣ1 during SS. This consequence of
underactuation verifies our earlier claims that the preimage
of single support imposes a strict range on Ḣ1.

As the COM passes the stance foot with a small negative
velocity, the angle H1 becomes slightly negative. The slice
in Fig. 5(d) focuses on a positive Ḣ2. Notice that the value
function guides H2 to a narrow corner as H1 passes 0.
For this slice, this is the computed desired angle of ground
contact at which the controller applies negative torque to
H2. Hence Ḣ2 decreases and leaves this slice of V(x).

Further analysis of the optimal value function indicates
a similar capacity of DP to automatically compute the
features of our complex dynamic space. The computed
policy locates a limit cycle through the space and calculates
the actions that drive the system towards this cycle.

B. Successful Performance Under Error

In testing our approach, we constructed a 3D simulation
of the biped and boom. The extended simulation contained
small lateral perturbations and a frictional ground contact
model. We introduced two simple PD-servo controls to
constrain the lateral motion of the hips and move the swing
knee during the SS phase. All significant aspects of the
robot dynamics were handled by the policy computed using
DP on a planar model. Following this policy, the robot
successfully entered a stable walking gait on a flat surface.

To further test the response of our DP policy under error
and uncertainty, we applied disturbances to the robot and
environment models. Table II summarizes our results and
Table I describes the physical parameters of our robot.

TABLE I
ROBOT AND DYNAMIC MODEL PARAMETERS

Torso Thigh Shin
Mass (kg) 2.97 .64 .22

Length (m) .01 .2 .22
Hips Knees

Torque Limits (Nm) ±1.8 ±5.4

The disturbances in Table II can be categorized into two
groups: correlated error and random, uncorrelated noise.
Clearly in the case of random error, the system responded
with relative ease. For both sensor readings and applied
torques, the ranges successfully dealt with were well be-
yond observed noise. We observed that at the limits of the
error bounds, the system exhibited large offsets from the
limit cycle. Still, within the given range, the policy was
able to walk forward successfully.

Correlated error is a more substantial challenge. In the
simple case of modeling error, f̂ incorrectly represents the
forward model of the state. DP selects actions based on the
expected resulting state. Therefore, the action choices do
not produce the expected motion towards the limit cycle.
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Fig. 5. (a) Traces of robot trajectories converging to the limit cycle when following the DP policy. (b) Selected slices of the computed value function.
The vertical axis represents the value, s.t. among neighboring states lower values are preferred by the policy. One can also see the relative resolution
of the grid for different state space components.

TABLE II
PERTURBATIONS PRESERVING STABLE WALKING

Random noise was sampled at the controller rate of .001s

Accepted Disturbance Range
Torso Mass .01kg ↔ 3.5kg

Thigh Mass (each thigh) .01kg ↔ 1.2kg
Shin Mass (each shin) .12kg ↔ .26kg

Ground Incline Up < 3.0o

Ground Incline Down < 2.4o

Uniform Random Grnd. Height ±1cm

Uniform Random Hip Sensor Noise ±.15rad
Uniform Random Knee Sensor Noise ±.3rad

Uniform Random Hip Torque Noise ±1.0Nm
Uniform Random Knee Torque Noise ±1.5Nm

Consequently, the system can drift away from the attractor
trajectory. The key advantage of DP is that we consider
a large volume of state space. The wide set of acceptable
states allows the actual trajectory to be distinct from the

expected limit cycle. Our results show that when the torso
mass varies between 1−120%, or the hip masses 1−200%
the unaltered policy enforces a lasting periodic limit cycle.

Consider the shin mass and the ground incline. In our
tests, these were the least versatile components. Although
both permit a significant error margin, (≈ 6o incline range),
they appear relatively small. We attribute this largely to
the fact that these components were entirely unmodeled
during policy acquisition. While various joint angles are
considered, the ground is always assumed to be flat.
Furthermore, shin positions during SS are determined by
an ad-hoc controller. Therefore optimal behavior for the
shins is not achieved. In future work, we should consider
developing appropriate measures for incorporating these
components into the policy.

Perhaps the most interesting experimental result is the
potential for handling a 200% thigh mass. One might
surmise that thigh mass is another insignificant component
of the robot dynamics. Based on our experiments, that
conclusion is far from the truth. While testing the controller
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Fig. 6. Trace of hips and knees as in Fig. 5(a). Here, hip masses are both
set to 200% of the actual robot. Notice the longer period and in particular
more prominent peaks in the knee plot which indicate the DS push-off.

on the unaltered model, the DS phase composed 2% of the
walk cycle. Altering the thigh mass increased the presence
of this phase to 7%. Such a change was not brought about
by any other disturbance. We conclude that during DS, our
policy covers a wide range of states and corrects for this
correlated shift in the cycle.

VI. FUTURE WORK

The results from the previous section indicate the poten-
tial for applying reduced dimensional dynamic program-
ming towards control in complex state spaces. With this
work as a baseline we can now explore numerous avenues
of research.

First, we observe that even the decomposed state space
forms a grid of substantial size. In fact, the dimensionality
of the cached model (̂f ) is the product of the state and ac-
tion spaces. Consequently our approach was implemented
on a coarse grid. Fig. 5 shows that significant sectors of
this grid are not valid states. Methods such as [11], [14]
that disregard these components would yield greater detail
in the space that is relevant to the policy.

Alternatively, we can pursue the use of regression to
depart from the grid-based architecture. The two models,
the segmented value function and policy can all be approx-
imated by means of locally weighted regression (LWR) [1]
and similar methods. Our architecture is complementary to
these techniques as it creates a significantly smaller space
to be represented. In fact, by relating our ideas to [17]
we can bootstrap the process of learning the LWR model
on the application of our DP solution. In doing so, we
can safely increase the effectiveness of our policy with
reasonable training on the robot.

In a broader perspective, we are interested in developing
automated means for decomposing complex dynamic state
spaces. Analyzing principal components is a first step in
this direction. However, computing the necessary coupling
between phases of control as well as reasoning about the
motion of lesser components remains a challenging and

interesting domain. Further research in related directions
will allow us to implement inherently robust techniques
such as dynamic programming on a wider set of complex
robotic applications.
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