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Abstract— We present results of successful telemanipulation
of large, heavy objects by a humanoid robot. Using a sin-
gle joystick the operator controls walking and whole body
manipulation along arbitrary paths for up to ten minutes of
continuous execution. The robot grasps, walks, pushes, pulls,
turns and re-grasps a 55kg range of loads on casters. Our
telemanipulation framework changes reference frames online
to let the operator steer the robot in free walking, its hands
in grasping and the object during mobile manipulation. In the
case of manipulation, our system computes a robot motion that
satisfies the commanded object path as well as the kinematic
and dynamic constraints of the robot. Furthermore, we achieve
increased robot stability by learning dynamic friction models
of manipulated objects.

I. INTRODUCTION

This paper presents a humanoid robot manipulating large,
heavy objects via teleoperation. Our experimentally vali-
dated system takes advantage of both human and robot
strengths through shared control. The operator understands
the environment and gives directional commands. The robot
computes trajectories that satisfy kinematic and dynamic
constraints to safely execute the motion. Our work makes
progress towards applications in hazardous rescue or con-
struction. Robots that move debris and materials would
reduce the physical load on operators and keep them away
from danger.

We use humanoid robots because their anthropomorphic
design makes them suitable for interacting in human environ-
ments and intuitive for humans to operate. We also focus on
large objects such as carts, tables, doors and construction
materials. Small objects can be lifted by the robot and
modeled as additional robot links. Heavy objects are typically
supported against gravity by external sources such as carts,
hinges or construction cranes. Large, heavy objects that do
not support the robot require management of significant
forces while performing manipulation.

The operator is not affected by the challenging domain.
Our flexible task frame interface reduces the 38 degree of
freedom humanoid control problem to the command space
of a three axis joystick. We make it possible, even simple,
for non-experts to perform complex manipulation as shown
in Figure 1. Low demands on users imply significant chal-
lenges for robots. We give strategies that interpret operator
commands and control the robot while maintaining balance,
avoiding joint limits and handling external forces.
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Fig. 1. HRP-2 successfully rotates the table by executing the operator’s
commands to pull it backwards, turn it, walk around, re-grasp and push.

II. RELATED WORK

Significant telemanipulation research focuses on telepres-
ence, or making the robot and communication transparent to
the user [1], [2], [3], [4]. While transparency is particularly
important for surgical applications [5], [6], Ambrose has
also taken this strategy with Robonaut [7] and Hasunuma
and Tachi applied it to HRP [8], [9]. These studies are
complementary to our goals. We aim to isolate the operator
from the complexity of dynamic trajectory generation, foot
placement and force balance.

Existing work that maps low dimensional commands to
complex humanoid trajectories typically controls the robot’s
hands in stance or its locomotion. In stance, Inoue [10]
autonomously changes robot posture and steps to increase
manipulability while Sian positions specific body points with
automated balance compensation [11]. During locomotion a
number of approaches modify heading online with varying
levels of autonomy. For instance Nishiwaki presents fast
trajectory generation for balanced walking gaits that can be
used to teleoperate locomotion [12]. Yokoi applies a linear
inverted pendulum for pattern generation [13]. Yasutaka[14]
controls the hand frame in walking and Chestnutt modifies
foot placements online to avoid obstacles [15]. To our
knowledge no existing humanoid telemanipulation system
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(a) Pulling the object (b) Walking (c) Turning the object

Fig. 2. Simulation and visualization of the task frame used in teleoperation. Control is performed in the robot frame (b) or the object frame (a,c).

handles large, heavy objects, allows walking and re-grasping
or uses a single three-axis joystick to command all tasks.

Our implementation resolves dynamic constraints by ex-
tending preview control described by Kajita [16]. Our
approach is distinct from earlier work by Harada [17],
Takubo[18] and Nishiwaki[19] in that it not only handles
pushing but arbitrary commanded displacements. To increase
stability for distinct loads we also learn dynamic friction
models of manipulated objects and apply them in control
through force prediction. Learning about object dynamics is
related to learning robot parameters. Atkeson, Moore and
Schaal [20], [21], [22] summarize approaches to learning or
adapting parameters to achieve precise trajectory following.
Friction modeling, in particular has been studied extensively
as summarized by Canudas [23] and Olsson[24].

III. OVERVIEW

Our teleoperation system consists of three modes of inter-
action: hand, object and robot centered. The operator chooses
a mode by holding a button and uses a three-axis joystick
to specify the target velocity for a reference pose or frame:
pH , pO or pR respectively. pO is fixed to the object and pH

to the robot hands. pR is an abstract pose representing the
robot. The object frame is an offset from pR given by the
operator or identified with external optical tracking in lieu
of an on-board tracking system. The operator commands:

HANDS three dimensional translation of pH with respect to
pR while the robot is standing.

OBJECT planar translation and rotation of pO in absolute co-
ordinates. Applied with the hands rigidly attached
to the object.

ROBOT planar translation and rotation of pR in absolute
coordinates.

Figure 2 gives the operator display. The controlled frames,
pR in (b) and pO in (a,c) are displayed with axes. The ball
shows commanded velocity with rotation given by the z-axis.

In this paper, Section IV completes a simplified problem
specification, allowing us to focus on the most significant
challenge: Given that pO is a rigid transformation of pH af-
ter grasp: Generate valid trajectories for all the robot joints
such that pO follows a commanded path. Section VI gives

hand and foot trajectories that satisfy kinematic constraints.
Section VII address dynamic balance for a known force and
Section VIII-A predicts a force from the manipulated object.

IV. DETAILED SPECIFICATION

This section completes our specification of the prob-
lem and introduces our assumptions. In the following,
∆t(150ms) is the time interval between joystick commands.
pA = TpB indicate that a pose A is fixed with respect to B
according to transform T. The assumptions are not required
to use our methods, however they aid in the interpretability
of workspace descriptions and simplify the operator’s task.

First, consider mode switching. All three modes are initi-
ated with the robot at rest. HANDS can be terminated at any
time since the robot legs remain static. Both walking modes
impose a stopping delay since dynamic balance does not
allow safe stops in mid-stride. To maximize preview control
performance, ROBOT and OBJECT commands specify linear
and angular velocities for two seconds, close to two steps.
The robot comes to rest two seconds after the last command.

Despite the two second delay for stops, the overall walking
control system has a latency of only 150ms. At time t
we are given two seconds of valid joint trajectories and
a new joystick command. We use the existing trajectories
to compute the robot state at t + ∆t and pose it as the
start state for commanded velocities. The new command is
interpreted by Section VI and Section VII during the ∆t
interval. New trajectories are implemented immediately after
they are generated and validated as proposed by [12].

Second, for grasping arbitrary objects, teleoperation
should permit the operator to move each hand independently.
In this work we seek simple interaction and an interpretable
workspace. Without loss of generality, we assume that both
hands are fixed with respect to each other and pH and that
the orientation of the hands remains fixed with respect to pR.
The hands are always opened at the start of HANDS mode
and closed in a power grasp at the end. Grasp completion is
determined by a threshold on finger strain-gauges. During
HANDS, joystick position and rotation specify horizontal
and vertical velocity respectively. To achieve this velocity
we apply resolved rate control [25], mapping the workspace
velocity of pH to the robot joints. Target displacements are
modified for compliance via impedance control (VIII-B).



Third, during walking we must relate pR to a physical
body. We do not use the robot torso since its motion maints
dynamic balance in Section VII and should not be controlled
by the operator. Instead, we assume the stance foot changes
position at a constant rate t (t = 900ms). pR is a point such
that any time a foot (F = lf or rf ) contacts the ground:

pkt
F = TF

Rpkt
R (1)

Paths for pR are continuous while footsteps are discrete.
During the ROBOT mode, the operator specifies a path for
pR. During OBJECT, we assume that pR = TR

OpO. Notice
that ROBOT is a special case of OBJECT where pR = pO and
pH is unconstrained. While we focus on the OBJECT mode,
free walking is solved identically with fewer constraints. The
remainder of this paper will focus on executing walking
manipulation during OBJECT.

V. LAYERED TRAJECTORY GENERATION

Our system generates 38 valid joint trajectories that exe-
cute object motion and satisfy dynamic balance. To achieve
this, we decouple the tasks and solve them sequentially.
First we compute a workspace trajectory for the object, pO.
Second, we find a trajectory for the torso, pT that satisfies
dynamic balance. Last, we map these trajectories to robot
joints. For this approach to be feasible, we must first show
that it is possible to independently compute trajectories for
pO and pT .

To independently position the object and the torso we
specify the kinematic chains that place pO and pT from the
stance foot. First, we define the positions of the hands and
feet relative to the object. Due to rigid grasp manipulation,
the hand positions, plh and prh are fixed to pO. Given
pR = TR

OpO and Eq. 1, the stance foot position is assigned
at impact:

pst = Tst
RTR

OpO (2)

The robot swing foot, psw follows a cubic spline connecting
its prior and future stance positions.

Given pO and pT we apply inverse kinematics to four
kinematic chains to find all the robot joints.

pst → pR 6 Stance leg pR → plh 7 L arm
pR → psw 6 Swing leg pR → prh 7 R arm

We use analytical IK solutions to expedite calculations and
avoid drift. Chest joint values are constants that maximize
the workspace. Redundancy in the arms is resolved by
fixing elbow rotation about the line connecting the wrist and
shoulder. [26] Although many of the link positions are highly
coupled, the two positions of interest, pT and pO, are not.

VI. OBJECT TRAJECTORY GENERATION

Since there are six independent joints separating pst and
pT as well as pT and pO the robot has the necessary
redundancy to independently control the object and its torso.
Due to joint limits only a subset of (pO,pT ) pairs are valid.
Since we compute the pO trajectory prior to pT we must
ensure that future torso trajectory generation will be valid
with regard to kinematic constraints on robot hands and feet.
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(c) Valid trajectories for object rotation.

Fig. 3. Workspace constraints and valid trajectories during OBJECT control.
In (b,c) two pairs of steps demonstrate the relationship between the torso
workspace and the controller bounds.

The directional joystick command can be interpreted as a
curve along which the object will travel. To find a trajectory
we need to determine how far along this curve the object
will be displaced. We summarize the motion constraints and
give a method for setting the displacement.

A. Trajectory Constraints

Figure 3(a) illustrates two constraints that the object
trajectory must satisfy: foot placement and torso workspace.
We compute the trajectory for pO in foot step increments.
Suppose we have valid pt−1

O and hence pt−1
st . We describe

the constraints on a valid pt
O



Since the object trajectory uniquely determines foot place-
ment we must ensure that pt

st can be executed by the robot.
Valid foot placements P(pt

sw) are determined with respect
to pt−1

st . The region shown in Figure 3(a) was experimentally
determined by previous work on walking control [12]. In ad-
dition to satisfying the bounds of stable walking it precludes
foot collisions and satisfies joint limits.

When moving the stance foot from pt−1
st to pt

st, the robot
center of pressure must also switch to the new position.
Section VII generates a torso trajectory that realizes this
change. Although we have no analytical bounds for pT

generated by Preview Control[16], experimentally we have
found that the torso does not leave the pT -oriented rectangle
surrounding pt−1

st and pt
st. Consequently, we ensure that this

rectangle is included in the torso workspace.
WO(pT ) in Figure 3(a) is the workspace of the robot

hands holding the object given a fixed torso. Conversely, we
compute WT (pR = TR

O pO) as the workspace of the torso
for a fixed object. Generally every point on the pO trajectory
should yield a workspace that includes the control rectangle.
For translations and small rotations it is sufficient to ensure
the condition at WT (pt−1

R ) and WT (pt
R). Since the object

may deviate from the trajectory due to impedance control we
reduce WT (pR) by a safety margin.

B. Command Interpretation

We have now identified the criteria for a valid object
displacement. The simplest strategy for choosing a distance
along the commanded curve is to verify the displacement that
results from the commanded velocity. If the displacement sat-
isfies the constraints it is applied, otherwise the future object
placement is unchanged. This strategy has merit for legged
robots. Even if the robot cannot achieve the displacement
with the current swing foot it might after changing support.

The disadvantage of this approach is that bringing the
object to a stop makes manipulation less intuitive and intro-
duces error due to static friction. We propose two improve-
ments. First, since our representation of P(psw)t is analytic,
we solve for the maximum swing foot displacement. We find
the maximum object displacement due to Eq. 2 and bound
the target velocity. Second, we modify the object trajectory
by incorporating one time step of command history.

Arrows in Figure 3(b) stem from pt
R that correspond to

operator specified pt
O. The foot pt

sw is placed according to
Eq. 1. However, when creating an object trajectory a history-
adjusted pt†

O is placed at the midpoint of pt−1
O and pt

O. This
is reflected by pt†

R as shown in Figure 3(b,c). The workspace
trajectories for the feet and the torso are generated from the
original pt

sw and modified pt†
O respectively.

Trajectory modification proved very effective in creating
uninterrupted motion for the object even when the robot
makes no progress with a single step. Figure 3(c) shows
two cases that occur during rotation. Odd steps, 7, move
the right foot sideways and even steps, 14, place the left
foot adjacent to the right. The object pose, pt†

O , moves in
equal increments on each step leading to a constant velocity
object trajectory. Furthermore, as seen in Figure 3(a,b), our
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Fig. 4. Model of the robot used for torso trajectory generation.

approach centers WT (pt†
R) around the rectangular controller

bounds. This allows the robot to take longer steps safely.

VII. TORSO TRAJECTORY GENERATION

The object trajectory in Section VI specifies foot place-
ments and allows for bounded torso motion around pR. We
now compute a trajectory for the torso, pT , that balances the
robot during manipulation. Reaction forces from the object
are included in our controller. Section VIII-A provides two
methods identifying these forces.

We define balance by relating the zero moment point to
stance foot position. The robot is modeled as a point mass,
mr, at a fixed displacement from the torso, pr = Tr

T pT .
pr = {xr, yr, zr}, zo is the height of the hands and f is the
reflected force. This section computes a trajectory for xr and
therefore xT . yr is found analogously and zr is constant.

Eq. 3 introduces zmp as the ground point around which
the torques due to gravity acting on mr, reflected force from
accelerating mr and the force from the object sum to zero.

τzmp = mrg(xr − zmp)−mrẍrzr − zof = 0 (3)

Solving for zmp yields:

zmp = xr − ẍr
zr

g
− zof

mrg
. (4)

Dynamic balance requires zmp to remain in the robot support
polygon. To maximize error tolerance we seek a trajectory
that minimizes the distance between zmp and the stance foot
center zmpd = xst as given by the object trajectory.

Let J0 =
∑

t(zmpt
d − zmpt)2 be the performance index

for balance. Eq. 5 further defines β and βd as functions of
zmpd and xr respectively.

βd = zmpd +
zof

mrg
β = xr − ẍr

zr

g
(5)

Substitution yields J0 =
∑

t(β
t
d − βt)2. βt

d is fully de-
termined since zmpd is the trajectory of foot centers,
{zo,mr, g} are constant and f is assumed to be known.

Suppose we interpret β as the observation of a simple
linear system in xr with the input

...
xr. For smoothness, we

add squared input change to the performance index.

J =
∞∑

t=1

Qe(βt − βt
d)

2 + R(
...
xt − ...

xt−1)2 (6)

We determine the optimal
...
xr with preview control [16]. At

any time t we know the error e(t) = βt − βt
d, state x(t) =



[ xt
r ẋt

r ẍt
r ]T and N future βi

d. Preview control finds the
gains G1, G2 and G3 such that ∆

...
xt

r in Eq. 7 minimizes J .

∆
...
xt

r = −G1e(t)−G2∆xt
r −

N∑
i=1

Gi
3(β

t+i
d − βt+i−1

d ) (7)

More is available in Appendix B of [27] summarizing [28].
The control ∆

...
xr is discretely integrated to generate the

trajectory {ẍr, ẋr and xr}. Since pr is assumed to be fixed
to the robot torso, the generated joint space trajectory still
results in zmp tracking error. We incorporate this error into
the reference trajectory and iterate optimization.

VIII. FURTHER CONSIDERATIONS

Having described the generation of teleoperation trajec-
tories we now introduce force modeling and compliance
modules that led to the experimental success of our system.

A. Force Modeling
Section VII described torso trajectory generation given a

known external force. When the humanoid interacts with an
unspecified object, the reflected forces may not be known
in advance. We compared a reactive strategy for handling
external forces to one that modeled the object dynamics with
viscous friction in [29]. The reactive strategy assumed that
an experienced force would remain constant for .15 seconds
during trajectory execution. [19]

For modeling, we accumulated a small set of data using
the reactive strategy and applied least squares estimation to
compute a friction coefficient, c, that satisfies Eq. 8.[

ẋ1 ẋ2 · · · ẋn

1 1 · · · 1

]T [
c
b

]
=

[
f1 f2 · · · fn

]T
(8)

The term b was used to remove bias. [29] showed that this
method reduces variance in sensed forces, improves predic-
tion accuracy and system stability. We applied modeling to
predict forces tangent to the direction of motion. The robot
was prevented from pulling the object laterally except during
rotation. Un-modeled lateral forces were handled reactively.

B. Online Feedback
We have described the generation of a balanced trajectory

for pR given pO. To handle online errors we modify these
trajectories online prior to realization with robot joints.
Online feedback operates at a 1ms cycle.

Accumulated ZMP tracking error can lead to instability
over the course of execution. Therefore, a proportional
controller modifies the acceleration of pR to compensate for
ZMP errors perceived through the force sensors at the feet.
Corrections are discretely integrated to achieve pR position.

The trajectory for pO, or the robot hands, is modified by
impedance. We use compute an offset for pO that results
from integrating the measured force error F in Eq. 9.

F = miẍo + diẋo + ki(xo − xd
o) (9)

Impedance ensures that hand positioning errors do not lead to
large forces pushing down on the object. di and ki are set low
for vertical displacements. Impedance also prevents the robot
from exceeding torque limits when the trajectory cannot
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Fig. 5. Trajectory traces of telemanipulation. The robot was driven to
manipulate, walk, re-grasp and repeat for 4.5 minutes as shown in Figure 6.

be executed due to un-modeled dynamics. The horizontal
position gain trades a displacement of 10cm for 100N steady
state force. This allows for precise trajectory following and
soft termination when the offset exceeds force limits.

IX. RESULTS

We applied our approach to a number of teleoperation
tasks that required the robot to transport a table on casters
with varying loads. Object models were constructed during
the initial interaction with a new load. The system performed
repeatable telemanipulation for ten minute intervals.

Figures 5 and 6 show traces and images of a representative
four minute execution with a load of 55kg. The load is
equal to the mass of the robot. In this experiment the robot
pushes and pulls the table twice, then rotates it. It is then
commanded to release the object, walk around, grasp it from
the side and repeat pulling, pushing and rotation.

In Figure 5 the object is static during walking and the
robot is standing during grasping. Observe the correspon-
dence between experienced force and commanded object
velocity. Forces during rotation about the object center are
significantly smaller. The large force after the second grasp
is due to commanded pulling while standing.

X. DISCUSSION

In this paper we presented a novel approach to telemanipu-
lation for humanoid robots using a single three axis joystick.
Our flexible task frame strategy and simple interface allow a
novice user to easily interact with the system. Using a layered
architecture, we guarantee at each layer that future layers
will find successful trajectories. In conjunction with friction-
based object modeling our method successfully completed
telemanipulation tasks with objects on casters and loads of
up to 55kg. Multiple experiments lasted up to 10 minutes
and included grasping, pulling, pushing and re-grasping.



(a) 29s Stand (b) 42s Push (c) 77s Pull, Rotate (d) 95s Release

(e) 130s Walk (f) 165s Grasp (g) 210s Pull, Push (h) 255s Rotate, Push

Fig. 6. Images from a single continuous execution of teleoperation of a 55kg table with pushing, pulling and re-grasping

Creating a low dimensional control space has further ap-
plications for continued work in robot autonomy. Advances
in environment sensing will make it possible for the robot to
judge the utility of actions and plan object manipulation.
A low dimensional space of safe controls increases the
efficiency of planning autonomous behavior for the robot.
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