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Abstract— We explore global randomized joint space path
planning for articulated robots that are subject to task space
constraints. This paper describes a representation of con-
strained motion for joint space planners and develops two
simple and efficient methods for constrained sampling of joint
configurations: Tangent Space Sampling (TS) and First-Order
Retraction (FR). Constrained joint space planning is important
for many real world problems involving redundant manipula-
tors. On the one hand, tasks are designated in work space
coordinates: rotating doors about fixed axes, sliding drawers
along fixed trajectories or holding objects level during trans-
port. On the other, joint space planning gives alternative paths
that use redundant degrees of freedom to avoid obstacles or
satisfy additional goals while performing a task. In simulation,
we demonstrate that our methods are faster and significantly
more invariant to problem/algorithm parameters than existing
techniques.

I. INTRODUCTION

In this paper we explore the application of randomized
motion planning algorithms to problems where the robot path
is required to obey workspace constraints. Task compliance
or constrained motion is critical in situations where the robot
comes in contact with constrained objects. Many real-world
tasks ranging from opening doors and pushing carts to help-
ing align beams for construction and removing rubble exhibit
workspace constraints. In these circumstances, the robot must
not only preserve the task constraint, but also avoid collisions
and joint limits throughout a planned motion. Redundant
robots, such as mobile manipulators and humanoids, have
the dexterity to accomplish both objectives. The challenge is
to efficiently explore alternative joint space paths that satisfy
task constraints without being trapped in local minima.

II. RELATED WORK

In addition to finding a collision-free joint space path [1],
our problem requires that each configuration along the path
satisfy workspace constraints for the end-effector [2],[3].
We distinguish this problem from specifying a single goal
pose for the end-effector [4] or a path that the end-effector
must follow [5], [6], [7]. In our case, the end-effector path
is not predetermined and the constraints must be satisfied
throughout the path.

Even when the end-effector path is specified, handling
robot redundancy poses a difficult challenge. Typically, re-
dundancy resolution is performed with local [8], [9] or global
[10] techniques for optimal control. These methods optimize
configuration-dependent criteria such as manipulability. Ob-
stacle distance, a common criterion for collision avoidance,

Fig. 1. DOOR: Still frames from our simulated environment demonstrating
a motion plan to open the door. The robot must avoid joint limits and the
box fan to successfully complete the plan.

has a highly non-linear relationship to joint configurations
and leads to the use of local optimization [11], [12], [13].
These methods require the generation of distance/potential
functions for obstacles. Moreover, they do not find solutions
in the presence of local minima that exist in all three of our
examples.

For a more comprehensive exploration of the search space,
motion planning research has headed towards feasible so-
lutions and probabilistically complete algorithms such as
PRM[14] and RRT [15][16]. These algorithms operate by
generating random joint space displacements. However, in
the case of constrained motion, the probability of randomly
choosing configurations that satisfy the constraints is not
significant or zero. This is shown for problems involving
closed chains in [17] and [18].

To address this challenge, some approaches use domain-
specific attributes such as closed chain structure [17], [18],
[19] or dynamic filtering [20]. Among these techniques,
one algorithm, Randomized Gradient Descent (RGD)[17]
has been extended for use with arbitrary constraints [21].
RGD randomly shifts sampled configurations in directions
that minimize constraint error. However, [21] applies this
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Fig. 2. DOOR (FR): Paths for robot joints and door rotation (about z-axis)
in Fig.1. Base translation (1,2) and rotation (3) diverge significantly from
straight paths to globally avoid obstacles and satisfy constraints.

algorithm with general constraints on a case-by-case basis.
We propose to adapt the existing task frame formalism [2]
to unify the representation of constraints and initiate the
comparison of algorithms for constrained sampling.

In addition to RGD, we considered ATACE [21] as well as
adapting the path-following strategies from [6], [7]. However,
ATACE explores task space motions with RRTs and locally
follows them in joint space. This approach cannot solve
Figure 1, since more than one joint space path must be
explored along a single task space path. [6] and [7] require
a partition of the robot into ”base” and ”redundant” joints.
Error due to perturbations of redundant joints is compensated
by inverse kinematics of the base joints. This algorithm relies
on significant freedom for base joints, since obstacle and
joint limit constraints will prevent error compensation even
when redundancy in the remaining joints is available.

This paper presents two contributions in the domain of
constrained joint space planning. First of all, we apply an
intuitive formulation of task space constraints. Secondly, we
propose and evaluate a strategy for generating joint space
samples that satisfy these constraints. Our strategy is shown
to be experimentally successful in comparison to RGD with
regard to different tasks and variations in parameter choices.

III. PRELIMINARIES

This paper uses three spaces of coordinates:
qi Joint space coordinates refer to a vector of single-axis

translations and rotations of the robot joints.
TA
B Work space homogeneous matrices represent the rigid

transformation of frame FB with respect to frame FA.
xi Task space coordinates will be used for computing error

with respect to the task frame (Section IV).
Note that task space is equivalent to work space by rigid
transformation. The distinction allows for a simple formu-
lation of constraints. We also employ RA

B for rotations of
FB with respect to FA. Likewise, pA and zA are vectors
in frame A.

IV. REPRESENTATION OF CONSTRAINTS

We define a task constraint as a restriction on the freedom
of motion of a robot end-effector.[2][3] The degrees of
freedom for a rigid body are defined by translations and
rotations in a given coordinate frame. The task frame, F t, is

derived from the world frame, F0, by a rigid transformation
of the world axes. The matrix T0

t specifies the position and
orientation of F t with respect to the world frame.

In the task frame we have various options for quantify-
ing end-effector error. For instance, translations may be in
Cartesian or Spherical coordinates, while rotations could be
described by Euler Angles or Quaternions. The choice of
coordinates will affect the types of constraints that we can
represent. [3] For any representation we define C, the motion
constraint vector. C is a vector of binary values for each of
the coordinates. A value of one indicates that the end-effector
motion may not change the coordinate.

We can also represent C as a diagonal selection matrix
[2]:

C =

 c1
· · ·
cn

 C =

 c1
· · ·

cn

 (1)

We use C and C interchangeably. Without loss of generality
we highlight the example of a Cartesian representation of
translations and roll/pitch/yaw rotations about fixed axes. In
these coordinates, a rotation with respect to the task frame
is defined about the xt, yt and zt axes of F t:

Rt
B = R(zt, φ)R(yt, θ)R(xt, ψ) (2)

This choice of coordinates directly specifies permitted trans-
lations and rotations about the task frame axes. The C vector
for our representation is six dimensional:

CRPY = [ cx cy cz cψ cθ cφ ]T (3)

The complete representation of a task constraint consists of
the task frame Ft, the coordinate system and the motion con-
straint vector Ct. The description may be constant throughout
the motion plan, or it could vary in accordance with the robot
configuration or the state of a higher-level planner.

V. SPECIFYING CONSTRAINTS

Section IV described a simple formulation of motion
constraints that allows for significant variation in definitions.
In this section we show a spectrum of constraint definitions
that have intuitive formulations in our representation.

A. Fixed Frames

The simplest task defines a single frame Ft and Ct for
the entire path plan. Fixed frame constraints occur when
manipulating objects that are kinematically linked to the
environment (Fig. 1, 8). F t is any frame in which the axes
align with the directions of constrained motion. Usually
the transformation describing F t, T0

t is the position and
orientation of the object. Ct indicates which axes of Ft
permit valid displacements.

When planning constrained manipulation, one can assume
that the object is rigidly attached to the robot during grasp.
At the time of grasp, let T0

A and T0
e represent the position

and orientation of object A and the end-effector respectively.
We define the grasp transform TG:

TG = Te
A = Te

0T
0
A = (T0

e)
−1T0

A (4)



(a) Fixed C = [ 0 1 1 1 1 1 ]T (b) Fixed C = [ 1 1 1 1 1 0 ]T (c) Para. C = [ 0 0 0 1 1 0 ]T (d) Para. C = [ 1 1 1 1 1 0 ]T

Fig. 3. Examples of constraints implemented with a roll/pitch/yaw specification of task coordinates. The task frames in (c) and (d) are
parameterized by the configuration of the robot.

During manipulation, the kinematics of the end-effector are
extended to include the manipulated object:

T0
e′(q) = T0

e(q)TG (5)

With this extension, C directly specifies the permitted dis-
placements of the object.

B. Simple Frame Parameters

Section V-A described a global constraint on the robot
end-effector. Suppose the constraint is defined locally with
respect to the position of the end-effector or another function
of the planner state. For instance, a task may consist of
manipulating a sequence of constrained objects.[22] Each
object is assigned a distinct task frame and constraint vector.
The planner selects the task frame based on the object with
which it is in contact.

Alternatively, the constraint for a single object may be
defined locally with respect to the configuration of the robot.
For example, a local constraint on rotation is meaningful for
transporting open containers of liquid such as paint (Fig-
ure 9). In this case, the task frame orientation is designated
by the world frame and the position is determined by the
end-effector configuration. The constraint vector remains a
specification of the directions of permissible motion.

C. Kinematic Closure Constraints

An important constraint for multi-arm manipulation and
reconfigurable robots is a linkage with a closed kinematic
chain. One approach to specifying kinematic closure is to
break the chain at an arbitrary joint jk. The linkage becomes
an open chain with a constraint defined by the freedoms of
the detached joint jk.

We formulate closure as a special case of parameterized
task frame constraints. For any open chain joint configura-
tion, q, the kinematic expression for jk along each chain
yields a work space transform T(q) describing jk with
respect to F0. One of these transforms can be specified as the
task frame, T0

t (q) while the others are end-effectors T0
e(q).

As with previous examples, the constraint vector intuitively
specifies the degrees of freedom for the joint jk.

D. Constraint Paths and Surfaces

Some elaborate constraints may require the end-effector
to remain on a non-linear path or maintain contact with a
complex surface. In this case there are at least three options:

1) Parameterize the task frame by the nearest position on
the path or surface to the sampled configuration.

2) Parameterize the surface by a subset of standard
orthogonal coordinates and constrain the remaining
coordinates to the surface values.

3) Define a coordinate system that implicitly encodes dis-
tance from the surface as a change to the coordinates.

Notice that in the case where a path is parameterized by time,
the end-effector trajectory is a continuous sequence of task
frame parameters. Extending the search space with time, the
frame of a sampled configuration is decided by time.

VI. INTRODUCING CONSTRAINED SAMPLING

In selecting a representation of task constraints we iden-
tified a linear subspace of constrained configurations for
the end-effector in the task space. This is the space of all
coordinates x in F t such that xi = 0 when ci = 1. This space
maps to a non-linear manifold in robot joint space. When
sampling the joint space, randomized planners typically
produce samples that lie outside the constraint manifold. Our
proposed methods use C to formulate a distance metric in
task space and project samples within a tolerance distance
(ε) of the constraint.

A. Computing Distance

Having identified a sampled configuration qs, we compute
the forward kinematics for qs. Commonly the end-effector
frame, Fe, is found in homogeneous coordinates as the
transformation T0

e(qs). The displacement of Fe with respect
to the task frame F t is found by:

Tt
e(qs) = Tt

0T
0
e(qs) = (T0

t )
−1T0

e(qs) (6)

We now represent the transform for end-effector displace-
ment with respect to the task frame in task coordinates.
The Appendix also defines this change in representation for
roll/pitch/yaw.

∆x ≡ Tt
e(qs) (7)

The task space error is found simply by the product in Eq. 8.
This product has the effect of selection presented in Eq. 9.

∆xerr =
[
e1 . . . en

]
= C∆x (8)

ei =
{

0 ci = 0
∆xi ci = 1 (9)



TASK CONSTRAINED RRT(qinit,∆t)
1 T .init(qinit);
2 for a = 1 to A
3 do qrand ← RANDOM CONFIG;
4 qnear ← NEAREST NEIGHBOR(qrand, T );
5 qdir ← (qrand − qnear)/|qrand − qnear|;
6 qs = qnear + qdir ∆t;
7 if *CONSTRAINED* NEW CONFIG(qs,qnear)
8 then T . add vertex (qs);
9 T . add edge (qnear,qs);

10 return T

COMPUTE TASK ERROR(qs,qnear)
1 (C,Tt

0)← RETRIEVE CONSTRAINT(qs,qnear);
2 T0

e ← FORWARD KINEMATICS(qs);
3 Tt

e ← Tt
0T

0
e;

4 ∆x← TASK COORDINATES(Tt
e);

5 ∆xerr ← C∆x
6 return ∆xerr;

Fig. 4. Pseudo-code for the Task-Constrained RRT (TC-RRT) construction
algorithm. The word *CONSTRAINED* represents either RGD, TS or FR.
COMPUTE TASK ERROR is common among all three subroutines.

B. Baseline: Randomized Gradient Descent

The proposed distance metric detects when a configuration
satisfies the constraint tolerance. Furthermore, it can be used
to identify task space motions that reduce error. Our algo-
rithms use this information to construct constrained samples.

The three methods we compare are Randomized Gradient
Descent (RGD) [17][21], Tangent-Space Sapmling (TS), and
First-Order Retraction (FR). For simplicity, we will describe
each approach as a modification to the basic RRT algorithm
summarized in Figure 4. The algorithm samples a random
configuration qrand and finds its nearest neighbor in the tree
qnear. The sampled configuration qs is placed at a fixed
distance ∆t along the vector from qnear to qrand.

As a baseline, consider the RGD algorithm detailed in
Figure 5. After computing the task space error of qs, this
method continues to uniformly sample the neighborhood of
the configuration within a radius dmax. The error of each
new configuration q′s is compared with qs. If the error is
less, q′s is substituted for qs. The procedure terminates when
the error is less than ε or the maximum iteration count is met.

VII. RELATING JOINT MOTION TO CONSTRAINT ERROR

Due to random selection, the RGD algorithm will typ-
ically evaluate forward kinematics for a large number of
configurations that result in greater task space error. To avoid
this computation, we identify the relationship between task
space error and joint space motion. Since the relationship is
nonlinear, we use a first-order approximation.

The basic Jacobian, J0, is a matrix of partial derivatives
relating joint space velocities to end-effector linear and
angular velocities. We compute the task frame Jacobian, Jt,
and use its inverse to find joint space displacements that
resolve task space error.

RGD NEW CONFIG(qs,qnear)
1 i← 0; j ← 0;
2 ∆xerr ← COMPUTE TASK ERROR(qs,qnear);
3 while i < I and j < J and |∆xerr| > ε
4 do i← i+ 1; j ← j + 1;
5 q′s = qs + RANDOM DISPLACEMENT(dmax);
6 ∆x′err ← COMPUTE TASK ERROR(qs,qnear);
7 if ∆x′err < ∆xerr
8 then j ← 0; qs = q′s; ∆xerr = ∆x′err;
9 if ∆xerr ≤ ε

10 then if IN COLLISION(qs)
11 then return false;
12 else return true;
13 return false;

TS NEW CONFIG(qs,qnear)
1 (C,Tt

0)← RETRIEVE CONSTRAINT(qs,qnear);
2 J← JACOBIAN(qnear);
3 ∆q = qs − qnear;
4 ∆q′ = ∆q− J†CJ∆q;
5 qs ← qnear + ∆q′;
6 return RGD NEW CONFIG(qs,qnear);

Fig. 5. Pseudo-code for the Randomized Gradient Descent and Tangent
Space Sampling strategies. Both methods constrain sampled configurations.

A. Task Frame Jacobian

The Jacobian of a robot manipulator, J0, can be computed
analytically given the kinematics of each joint at a sampled
configuration qs of the robot. [23] For JPi and JOi repre-
senting the translational and rotational contributions of joint
i, we have:

J0 =
[
JP1 . . . JPn
JO1 . . . JOn

]
(10)

Typically, this computation is performed in the world frame
F0. We invert the orientation of the task frame, R0

t , and
transform the Jacobian into F t as follows:

Jt =
[

Rt
0 0

0 Rt
0

]
J0 (11)

The lower three rows of J0 and Jt map to angular velocities.
However, angular velocities are not instantaneous changes
to any actual parameters that represent orientation. Given
the configuration qs, instantaneous velocities have a linear
relationship E(qs) to the time derivatives of many position
and orientation parameters as given in the Appendix.[3]

J(qs) = E(qs)Jt(qs) (12)

B. Jacobian Inverse

Having established a mapping of instantaneous motion
between joint and task space we invert this relationship. For
redundant manipulators, there are many joint motions that
map to a single task space displacement. Our algorithms
use the right pseudo-inverse, J†, which maps instantaneous



Fig. 6. A schematic for constrained sampling for a 3D task space. Motion
is constrained to the x1, x2 plane. Nearest neighbors are found in joint
space, where the task plane maps to a non-linear manifold.

position error in frame F t to the least-norm velocities in
joint space required to correct it.

J† = JT (JJT )−1 (13)

While there are many algorithms for computing the pseudo-
inverse, we have used LU decomposition, a fast O(n3)
operation. This method is faster than iterative SVD and more
commonly available than the Greville method [24].

VIII. TANGENTIAL AND ORTHOGONAL TECHNIQUES

The mapping between joint space and task space given in
Section VII allows the introduction of two simple techniques
for constrained sampling. Tangent Space Sampling (TS)
projects each RRT sample into the linear tangent space of
its nearest neighbor. First-Order Retraction (FR) iteratively
approximates the minimal displacement that removes task
space error and applies it to the sample.

A. Tangent Space Sampling

First, observe that any existing qnear in the RRT is within
tolerance of the constraint manifold. For closed chains, [25]
finds that small joint displacements from qnear that are tan-
gent to the constraint manifold have a higher probability of
also being within tolerance. In our case, these displacements
have no instantaneous component in the direction of task
error. In other words, for displacement ∆q and Jacobian
J(qnear),

CJ∆q = 0. (14)

To use this insight in RRT search, let qs be a sampled
configuration at a small displacement ∆q from qnear. We
project the displacement into the null space of the task
constraint.

∆q′ = (I− J†CJ)∆q (15)

Eq. 15 represents the least-norm change to ∆q that places
it in the tangent space. Notice that ∆q′ is distinct from

FR NEW CONFIG(qs,qnear)
1 qr ← qs
2 ∆xerr ← COMPUTE TASK ERROR(qs,qnear);
3 while |∆xerr| > ε
4 do RETRACT CONFIG(qs,∆xerr);
5 if |qs − qr| > |qr − qnear|
6 then return false;
7 ∆xerr ← COMPUTE TASK ERROR(qs,qnear);
8 if IN COLLISION(qs)
9 then return false;

10 return true;

RETRACT CONFIG(qs,∆xerr)
1 J← JACOBIAN(qs);
2 ∆qerr ← J†∆xerr;
3 qs ← (qs −∆qerr);

Fig. 7. Pseudo-code for First-Order Retraction of sampled configurations.
RETRACT CONFIG is shown separately for clarity.

the minimal joint motion that achieves an equivalent task
space displacement J∆q′. The random direction is largely
preserved.

The projected sample is simply q′s = qnear + ∆q′. Due
to the non-linearity of the constraint manifold, q′s is still
unlikely to be within error tolerance. RGD is applied to the
sample to further reduce task space error.

B. First-Order Retraction

Although similar in form to TS, First-Order Retraction
behaves more like RGD in that it iteratively displaces the
sample towards the constraint manifold. Unlike RGD, the
displacement is not random but directed towards removing
constraint error. Unlike TS, the Jacobian is computed at the
sampled configuration qs rather than qnear.

Consider the retraction of a single configuration qs. First,
we find the task space error, ∆xerr, according to Section VI-
A. If the error exceeds tolerance, we compute ∆qerr, the
least-norm joint space displacement that compensates for this
error and adjust the sample to q′s:

∆qerr = J†∆xerr (16)
q′s = qs −∆qerr (17)

Since the Jacobian is a first-order approximation, task space
changes do not linearly map to changes in the joint space.
Locally, we apply gradient descent as shown in Figure 7.

Close to singularities, the pseudo-inverse may become
unstable. To resolve this, we discard samples when the
magnitude of adjustment exceeds the original displacement.

IX. RESULTS

We evaluated the sampling strategies on three sets of
simulated experiments: DOOR, DRAWER and PAINT. The
task is to plan a path for a PUMA 560 manipulator on
a holonomic mobile base. The base adds two redundant
degrees of freedom (dof) to the six-dof PUMA.



Fig. 8. DRAWER: A simulated experiment that requires the robot to open
the drawer. The robot must first move around the footstool to allow sufficient
space for the end-effector trajectory.

A. Experiment Design

In each example, the robot is given an initial grasping
configuration from which we grow an RRT according to
each constraint method. The robot must maintain the task
constraint and achieve a goal that satisfies a workspace
criterion:

DOOR - Open the door past 0.6 rad.
DRAWER - Extend the drawer 0.3 m.
PAINT - Move the paint 6.0 m to the right.

Once a configuration is found that satisfies the constraint,
the search is considered successful. During the search, the
door only rotates at the hinge, the drawer only slides and
the paint is not allowed to pitch or roll. Figures 1-9 show
successful solutions where the robot employs redundancy to
avoid obstacles and joint limits.

To show the relative stability of our methods, we con-
ducted experiments with different choices for step size, ∆t,
and error tolerance, ε. Each trial was performed 10 times and
terminated when it was unsuccessful after 10 minutes. Both
FR and TS required no additional parameter choices. For
RGD, we set I = 1000, J = 100, dmax = ∆t/10.0. These
parameters resulted in the highest overall performance on the
three examples in our preliminary testing.

For efficiency, the RRTs in all experiments used the
VCollide collision checking package and the kd-tree nearest
neighbor approximation.[26] For simplicity, the basic RRT
algorithm was used without goal biasing of the samples.
Computation was performed on an Intel T2600 2.16GHz
processor, with an average memory load of 40MB. Final
trajectories were smoothed with cubic splines.

B. Experimental Results

Tables I-III summarize the average computation time when
all 10 trials succeeded. When at least one trial failed, the

TABLE I
RUNTIMES FOR EXPERIMENT 1: DOOR

∆t (Step Size)
ε(m, r) .04 .02 .01 .005 .0025

R
G

D 10−4 107.16 50.16 69.56 130.57 256.0
10−5 60%
10−6

T
S

10−4 22.60 11.35 18.33 25.03 62.22
10−5 90% 114.77
10−6

FR

10−4 4.46 10.28 14.64 36.92 139.25
10−5 12.70 20.28 15.21 44.74 89.49
10−6 5.56 8.82 19.50 63.86 108.8

TABLE II
RUNTIMES FOR EXPERIMENT 2: DRAWER

∆t (Step Size)
ε(m, r) .04 .02 .01 .005 .0025

R
G

D 10−4 21.42 13.98 19.49 40.09 96.91
10−5 282.98 90%
10−6

T
S

10−4 7.81 5.38 9.92 21.24 43.37
10−5 153.65 68.62
10−6

FR

10−4 1.58 4.53 6.05 19.52 34.44
10−5 2.50 3.40 6.18 16.84 33.72
10−6 1.64 4.65 8.18 17.21 32.45

tables show the percentage of successful trials. The tables
are blank when all 10 trials did not result in a solution within
the allocated 10 minutes per trial.

Experiments DOOR and DRAWER favor FR in terms of
both computation time and stability. In these examples, we
see that RGD and TS perform optimally with the largest
error tolerance and a step size of approximately .02. Lower
performance when ∆t = .04 is most likely caused by the dis-
tance of the sample from the constraint manifold. For RGD,
this distance implies a larger number of iterations to reach
tolerance. In the case of TS, a linear approximation to the
constraint manifold is less accurate for larger displacements.

For large tolerances, TS and RGD outperform FR in
Experiment PAINT. This is likely due to two factors: the
significantly larger space of valid configurations and its
linearity. Since only two coordinates are constrained, random
samples have a higher probability of being within tolerance.
Furthermore, translations of the base joints map directly to
unconstrained coordinates. Observe that even in a lightly
constrained setting, only FR succeeds for lower tolerances.

Overall, we found that Jacobian based algorithms required
less computation and performed comparably with RGD in
the worst conditions. FR showed significantly more invari-
ance with respect to error tolerance. We also observed an
approximately linear relationship between computation time
and time step. This increase is unavoidable since smaller
time-steps increase the length of the motion plan.

X. EXTENSIONS

Having introduced and compared a set of algorithms for
joint space planning with workspace constraints, we now
consider some simple extensions to our framework.

A. Unilateral Constraints
The motion constraint vector C represents bilateral con-

straints, prohibiting positive and negative coordinate change.



Fig. 9. PAINT: A simulated experiment where the PUMA must transport a can of paint. The plan is required to satisfy a parameterized constraint,
C = [ 0 0 0 1 1 0 ], prohibiting rotations about the x and y axes.
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Fig. 10. PAINT (FR): Paths for joints 2-8 in Paint experiment. (2,3) are
base translation/rotation. Joint 4 raises the arm to avoid debris, then lowers
under the ladder. Joint 7 moves accordingly, maintaining the constraint.

TABLE III
RUNTIMES FOR EXPERIMENT 3: PAINT

∆t (Step Size)
ε(m, r) .08 .04 .02 .01 .005 .0025

R
G

D 10−4 18.88 80% 119.19 80% 50% 10%
10−5 50% 80% 70% 50% 60% 10%
10−6

T
S

10−4 10.78 28.67 57.69 131.61 80% 10%
10−5 60% 293.88 186.94 209.14 90% 1%
10−6

FR

10−4 20.21 45.08 127.24 288.47 60% 20%
10−5 20.42 60.51 137.53 90% 70% 10%
10−6 22.36 42.95 126.94 80% 30%

Suppose a constraint requires a coordinate to remain within
an interval or to change monotonically. These cases can be
treated as either obstacles or parameterized constraints.

In the case of the former, samples that violate the con-
straint will be discarded. The latter option specifies ci = 1 or
ci = 0 for coordinate i based on whether or not the sampled
configuration violates the boundary. This choice will generate
more valid samples, yet it may bias these samples towards
the constraint bounds.

B. Alternative Planning Strategies

The algorithms evaluated in Section IX were all based on
the single-query RRT algorithm. However, both RGD and
FR are well suited for use in PRMs among other multi-
query algorithms. As long as the constraint distance metric
is well-defined throughout the space, arbitrary configurations
can be displaced towards the constraint manifold. All three
algorithms can be used to connect PRM samples.

The generality of our methods extends to the use of heuris-
tics such as RRT-Connect during search [27]. Since the only
modification to the RRT algorithm is in the NEW CONFIG
method, most heuristic variants of RRT are trivially extended
to include the proposed strategies.

C. Multiple Constraints

Some tasks require multiple end-effector constraints. This
can be achieved with a composite constraint vector CM . Let
Ci represent the constraint vector for task i. Then we have:

CM = [ CT1 CT2 · · · CTn ]T (18)

For the TS and FR algorithms, we also construct a gener-
alized Jacobian matrix composed by stacking the individual
task Jacobians. The computation of task space distance and
the planning algorithms remain unchanged.

D. Abstract End-Effectors

The generalization of task definitions also extends to
abstract end effectors. Section V-A displaced the end-effector
frame to the grasped object. In fact, any coordinate defined
as a function of one or more robot links can be constrained.
An important example is the robot center of mass (COM).
The COM position is a linear combination of the positions
pmi of the individual link masses, mi. For a total mass M ,

pcom = 1
M

∑
imipmi. (19)

This definition is sufficient to compute task space error. For
TS and FR we also define the COM Jacobian as follows:

J0
com =

[
JP1 . . . JPn

]
(20)

JPi =
{

( 1
M

∑n
j=imj)zi−1 (prismatic)

1
M

∑n
j=imj(zi−1 × (pmj − pi−1)) (revolute)

In the case where the end-effector is a non-linear function of
the joints, the Jacobian can be approximated numerically by
computing kinematics for small displacements in each joint.

XI. CONCLUSION

We have presented a unified representation for task space
constraints in the context of joint space motion planning.
We described three algorithms for task constrained sampling
in joint space. Our comparison of the algorithms indicated
that First-Order Retraction is typically faster and significantly



more invariant to step size and error tolerance than alter-
native techniques. Finally, we generalized our approach to
variations in constraint definitions and algorithm choices.

Our experimental findings regarding the efficiency of
Jacobian based algorithms also contribute to plan execu-
tion. Computing the Jacobian during planning allows us
to measure the manipulability of sampled configurations:
det(JJT )1/2 [28]. Maintaining a manipulability threshold
will permit stable use of local compliance or impedance
control and allow for error while following a computed path.

Many facets of task constrained planning remain for future
investigation. Each of the extensions in Section X can be
explored. For instance, Section X-C applies our method with
multiple hard constraints. A study of soft constraints may
lead to results in biasing motion plans towards desirable
robot postures. In these cases, task projection into the null
space of J† could be used to prioritize constraints.[29], [30]

Of course, soft constraints are one of many possible
deeper explorations of constrained search. Our proposed
tools demonstrate the feasibility of task constrained joint
space planning and provide a groundwork for further re-
search.
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APPENDIX

The use of any coordinate system requires us to derive
translations of displacements. Eq. 21 gives the mapping
from a rotation matrix to fixed axis coordinates. For Rab
representing the value at row a, column b of R:

ψ = atan2(R32, R33) θ = −asin(R31) φ = atan2(R21, R11)
(21)

In order to apply TS or FR, we also map velocities in
workspace to velocities in task space. The angular velocity,
ω, is a linear sum of individual rotational velocities in a
common frame: ω = E−1

ω (q)
[
ψ̇ θ̇ φ̇

]T
. Inverting this

relationship, we find Erpy .

Erpy(q) =


I3×3 · · · 0 · · ·

... cφ/cθ sφ/cθ 0
0 −sφ cφ 0
... cφsθ/cθ sφsθ/cθ 1

 (22)
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