
Navigation Among Movable Obstacles in Unknown Environments

Hai-Ning Wu Martin Levihn Mike Stilman

Abstract— This paper explores the Navigation Among Mov-
able Obstacles (NAMO) problem in an unknown environment.
We consider the realistic scenario in which the robot has
to navigate to a goal position in an unknown environment
consisting of static and movable objects. The robot may move
objects if the goal can not be reached otherwise or if moving
the object may significantly shorten the path to the goal.
We consider real situations in which the robot only has
limited sensing information and where the action selection
can therefore only be based on partial knowledge learned
from the environment at that point. This paper introduces an
algorithm that significantly reduces the necessary calculations
to accomplish this task compared to a direct approach. We
present an efficient implementation for the case of planar,
axis-aligned environments and report experimental results on
challenging scenarios with more than 50 objects.

I. INTRODUCTION

Robots would be much more useful if they could move
obstacles out of the way. Navigation Among Movable Ob-
stacles (NAMO) is an important problem in motion planning
because it gives mobile robots the ability to reason about the
environment and choose to manipulate obstacles [14]. Robots
that solve NAMO will accomplish tasks that are otherwise
difficult or impossible. They will operate in cluttered human
environments and strive towards human-level navigation.
In order to accomplish this goal, motion planning must
overcome a number of theoretical and practical challenges.

In this paper, we explore the NAMO problem in prac-
tical scenarios where the robot attempts to reach a fixed
goal position in a reconfigurable but unknown environment.
Starting with no knowledge about the environment, the robot
uses limited sensor information to locally detect objects
and incrementally build and manipulate a world model. The
robot may move objects if the goal cannot be reached or if
moving the object may significantly shorten the path to the
goal. An illustrative example is shown in Fig. 1(a) where
the robot is forced to move objects to navigate towards an
otherwise unreachable goal. With only local and incomplete
information (such as the movability of objects), the robot
must make a decision based on partial knowledge acquired
so far and gradually improve its world model as it navigates
towards the goal (e.g., in Fig. 1(b)).

NAMO in an unknown world poses a fundamental chal-
lenge in planning. Potentially, all possible actions have to be
reevaluated whenever new information is perceived. How-
ever, recomputing the cost of all possible actions for each
environment change is infeasible for realistic domains. We

The authors are affiliated with the Center for Robotics and Intelligent
Machines (RIM) at the Georgia Institute of Technology, Atlanta, Georgia
30332, USA. Emails: hwu43@gatech.edu, levihn@gatech.edu,
mstilman@cc.gatech.edu

GOAL

ROBOT

(a) Initial State

1

2

(b) Final Execution

Fig. 1. Successful NAMO with partial information. Yellow (light) objects
are movable. Blue (dark) ones are not. (a) Dashed lines represent unknown
objects. (b) The evolution of the robots internal map.

investigate a computationally feasible strategy that accounts
for environmental changes.

The main contribution of this paper is the introduction
of a novel algorithm that solves the NAMO problem in an
unknown world and significantly reduces the necessary cal-
culations. The proposed algorithm identifies cases where new
information does not affect previous calculations. Instead of
reevaluating all actions when new obstacles are detected, the
algorithm only performs additional computation when newly
detected information conflicts with the optimality of the
existing plan. We verify the algorithm in dynamic simulation
where the robot controller is guided by our implementation in
a planar, cell-decomposed, and axis-aligned environment. We
demonstrate the performance of the algorithm in challenging
scenarios with more than 50 randomly placed objects.

This paper is organized as follows: Section II gives a
review of related work both in NAMO and planning under
uncertain environments. Section III presents the proposed
algorithm and compares it to a naive baseline algorithm.
Section IV details the experimental results in a dynamic
simulation environment and characterizes the performance
of the algorithms. Section V discusses the limitations of
the algorithm as well as the challenges introduced by the
partial knowledge itself. Finally, Section VI gives concluding
remarks and presents directions for future work.

II. RELATED WORK

Wilfong [17] first proved that motion planning among mov-
able obstacles is NP-hard. Demaine [2] further proved that
even the simplified version of this problem, in which only
unit square obstacles are considered, is also NP-hard.

Mike
Typewritten Text
IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS'10) Oct. 2010

Chen [1] designed the first planner that handled multiple
movable objects and a navigation goal. The heuristic planner
first generated a series of subgoals and solved the subgoals
separately by a local planner. Chen’s planner failed to
solve problems in which the order of object manipulations
decides the solution. Stilman [14] presented a planner that
solved a subclass of NAMO problems named LP1 in which
disconnected components of free-space can be connected
independently by moving a single obstacle, reducing the
search space of NAMO by considering the difficulty of the
navigation task rather than the dimensionality of the space.
By formulating a problem in LP1 into a graph structure,
a resolution complete solution can be generated using a
heuristic planner. The planner was able to solve the difficult
problems presented in [1] and was successfully implemented
on the humanoid robot HRP-2 [16]. Beyond LP1, Stilman
further solved the domain where maximally k objects must
be moved to connect two disjoint components and each
object needs to only be moved once [15]. Li [7] constructed
an autonomous system which combined moving objects and
leaping over obstacles with other high-level behaviors using a
unified planning strategy. However, all these methods solved
NAMO given complete knowledge about the environment.
Furthermore, instead of aiming for optimality, heuristics were
used in order to find a resolution complete solution.

LaValle [6] presented a game-theoretic framework for
robot motion planning in uncertain environments. Pirjanian
[10] introduced many approaches to formulate the motion
planning problem as an action selection problem and also
presented an implementation of Multiple Objective Action
Selection for robot navigation [11]. By defining objective
functions for different subgoals, the Pareto optimality was
calculated to find a ”good enough” action for the current
state. Although they introduced promising ways on decision
making under uncertainty, it remains difficult to model the
problem within variant configurations and further guarantee
the optimality of each action.

The D* algorithm [12] [13] incrementally searched paths
in partially known environments by propagating the cost
evaluated from the previous state to the new state. Thus,
repeated replanning can be avoided without losing opti-
mality. Koenig [5] introduced a rather less complicated
algorithm, D* Lite, which only recomputes costs relevant
to new information. However, environments with movable
obstacles would require a significant reformulation of D*
algorithms. In contrast, we propose a set of clear and simple
improvements from the base case of search.

Koenig [4] also established a series of techniques for goal-
directed acting in the presence of incomplete information.
This work suggested applying agent-centered search methods
to minimize the cost of planning as well as plan execution.
Koenig also used partially observable Markov decision pro-
cess (POMDP) to enhance the reliability of planning with
incomplete information. POMDPs maintain and update a
probabilistic model to minimize the cost of plan execution.
Yet, such work was restricted to planning solutions that do
not change the environment.

The Bug algorithm presented by Lumelski [8] approached
the path planning problem for sensor-based robots in un-
known environments. The Bug algorithm provided reason-
able paths to the global goal based on local information and
the lower bound of the path can be guaranteed. Variants
of the Bug algorithm [9] utilized different optimizations
strategies such as reducing the length of the path or the
information needed. However, the Bug family did not handle
reconfiguration of environments and sacrificed optimality for
completeness and planning efficiency. Solution is inevitably
much higher.

III. ALGORITHM

We consider the navigation scenario with a nonholonomic
robot R in a two-dimensional workspace containing movable
and static objects. The robot has to find, with respect to
his current world knowledge, a collision-free path from the
given starting position Rinit to the given goal position Rgoal.
The robot is given its starting and goal position in world
coordinates, but no prior knowledge about the position, size,
or movability of the objects is provided. The robot gains
information about the position and size of objects through
the use of a laser range finder, but movability can only be
determined by interacting with the object. We restricted the
possible interactions with objects to axis-aligned pushes. The
environment is discretized in a N ×N grid and the objects
as well as the robot are modeled as rectangles.

The robot has an internal map of the environment which
is updated upon the detection of new obstacles and new
information about previously known objects, such as updated
size and movability. Every unknown cell in the map is
assumed to be free-space and every object is considered
movable unless a failed push action has been performed.
In addition, we are not considering the possibility of moving
multiple objects in order to create a new path. The immediate
plan is limited to moving at most one object.

For clarity, we will not explicitly mention static objects.
All cells that correspond to a detected static object are
marked as blocking robot and object motion in future plans.

A. Baseline

The direct solution to the NAMO problem in unknown
environments is to calculate plans for all possible actions on
all known objects once any change in the environment is
detected. This approach is outlined in Algorithms 1 and 2.

The algorithm is initialized by calculating a plan with
an A* search from RInit to RGoal using the Euclidean
distance as an admissible heuristic. If no new observations
are made, this plan remains unchanged until the goal is
reached. However, if a new observation is made, then for
all known objects (line 8) all possible push actions (line 9
and 10) are evaluated. This is done in Algorithm 2 where
a plan is constructed that consists of moving to the object
position, pushing the object, and moving from the final object
position to the goal. The procedure is visualized in Fig. 2
where the steps are labelled c1, c2 and c3, respectively.

Algorithm 1 BASELINE(RInit, RGoal)
1: R⇐ RInit;
2: O ⇐ ∅; {set of objects}
3: popt ⇐ A∗(RInit, RGoal);
4: while R 6= RGoal do
5: Onew ⇐GET-NEW-INFORMATION();
6: if Onew 6= ∅ then
7: O = O ∪Onew;
8: for each o ∈ O do
9: for each possible push direction d on o do

10: p⇐ EVALUATE-ACTION(o,d);
11: if p.cost < popt.cost then
12: popt = p;
13: end if
14: end for
15: end for
16: end if
17: R⇐ Next step in popt;
18: end while

Algorithm 2 EVALUATE-ACTION(o, d)
1: po,d ⇐ ∅
2: c1 = |A∗(R, o.init)|;
3: o.position = o.init;
4: while push on o in d possible do
5: o.postion = o.postion+ one push in d;
6: c2 = (o.postion− o.init);
7: c3 = |A∗(o.position,RGoal)|;
8: p = c1 + c2 + c3;
9: p.cost = c1 ∗ moveCost + c2 ∗ pushCost + c3 ∗

moveCost;
10: Po,d ⇐ Po,d ∪ {p};
11: end while
12: return p ∈ Po,d with min p.cost;

B. Optimized algorithm

In order to gain better scalability for bigger maps with more
objects, we design three techniques that reduce the necessary
calculations in the baseline algorithm given above.

1) Recalculation triggering: First, we do not automati-
cally recalculate plans upon the detection of new objects or
updated object information. Recalculation is required only if
the current plan becomes invalid due to expected collisions
with newly detected obstacle data. The calculation can be
postponed since each plan is computed with assumed free
space in unknown terrain. An obstacle can only increase the
cost of traversing the space that it covers. If the current path
is not blocked, replanning is unnecessary. This is shown in
line 6 of Algorithm 3 and visualized in Fig. 3. Recalculations
are not performed prior to the detection of object 3. If the
plan is blocked, all newly detected objects are evaluated for
possible displacements in line 8-10 of Algorithm 3. Fig. 3
shows a case where recalculation is necessary. If pushing
object 2 is not considered after detection then the original
path is blocked and the goal is unreachable.

Fig. 2. Visualization of the steps for a plan involving pushing object 1

(a) Time t (b) Time tx

Fig. 3. Detection of new objects forces recalculation of previously ignored
objects. (a) No recalculations are necessary. (b) All objects must be checked.

2) Limit A* calls: In order to reduce unnecessary recal-
culations, we limit the number of push action evaluations for
an object. The limit is set by determining an upper bound for
the cost of pushes. In line 5 in Algorithm 4 the upper bound
is determined by the cost of avoiding objects. If the cost of
only pushing an object already exceeds the cost of avoiding
the object, further pushes are not considered. This is due to
the fact that the plan consists out of the three parts c1, c2
and c3 (see Fig. 2 and Algorithm 4 line 10) which all yield
positive cost. Consequently, if c2 already exceeds the cost of
just avoiding the object, any plan involving further pushes
than c2 cannot yield a lower cost. In addition, plans are only
calculated for push actions that create a new opening in the
map. This can be seen in line 7 Algorithm 4 and is visualized
in Fig. 4 where the evaluation of object 2 is reduced to only
two plan calculations.

3) Reduce candidate objects: We do not recalculate plans
involving all previously considered objects. We consider only
those objects where a calculation appears promising. This
is done by retaining a sorted list with lower bounds for
previously computed plans. The list is sorted according to
minCost of a plan, representing partial plan cost. minCost
is set at the time of plan calculation in line 12 of Algorithm
4 and represents an underestimate for the true cost associated
with the plan. This list is traversed and updated plans (with
the current environment information) for the elements in
the list are computed. Traversal can be terminated once
a plan with lower cost than the under-estimated cost for
the next element in the list is found. Notice that objects
that were detected by the robot earlier are typically farther
from the goal. Hence they have have high c3 value and are
not reevaluated. This method is presented in line 14-19 of
Algorithm 3.

The only special case in our algorithm occurs if no
collision-free path avoiding the object could be found for
the optimization step of limited A* calls. In this scenario, the

Algorithm 3 OPTIMIZED(RInit, RGoal)
1: R⇐ RInit;
2: Psort ⇐ ∅; {list of plans, sorted ascending by

minCost}
3: popt ⇐ A∗(RInit, RGoal);
4: while R 6= RGoal do
5: Onew ⇐ Onew∪ GET-NEW-INFORMATION();
6: if popt ∩ Onew 6= ∅ then
7: popt ⇐ A∗(R,RGoal);
8: for each o ∈ Onew do
9: for each possible push direction d on o do

10: Psort.insert(OPT-EVALUATE-ACTION(o,d,
popt));

11: end for
12: end for
13: pnext = Psort[0];
14: while popt.cost ≥ pnext.minCost do
15: p=OPT-EVALUATE-ACTION(pnext.o,pnext.d,

Popt);
16: if p.cost < popt.cost then
17: popt = p;
18: end if
19: pnext = Psort.getNext();
20: end while
21: Onew ⇐ ∅;
22: end if
23: R⇐ Next step in popt;
24: end while

(a) Internal map (b) Evaluation of Object 2

Fig. 4. Plans are only calculated upon new path openings and when the
maximum push distance is limited by the cost of avoiding the object. In (b)
only two A* calls, marked with blue circles, are necessary when evaluating
pushing object 2.

upper bound for the costs of a push action in the optimization
step is infinity. We observe that we can detect which objects
are not affecting our ability to find the goal. For example,
this can be done by ignoring one object at a time and then
checking if a path to the goal without this object can be
found. If no path can be found then this object is considered
non-blocking, however if a path can be found without that
object then it is a blocking object. We can now iterate over
the list of blocking objects and in each iteration, we increase
the number of push actions evaluated on each object. Upon
the first detection of a possible opening, we use this value as
an upper bound for evaluating push actions for each object.
This special case is handled in our algorithm but not shown
in pseudocode.

Algorithm 4 OPT-EVALUATE-ACTION(o, d, popt)
1: Po,d ⇐ ∅;
2: c1 = |A∗(R, o.init)|;
3: c2 = 0;
4: o.position = o.init;
5: while push on o in d possible AND c2 ∗ pushCost <

popt.cost do
6: o.postion = o.postion+ one push in d;
7: if push created new opening then
8: c2 = (o.position− o.init);
9: c3 = |A∗(o.position,RGoal)|;

10: p = c1 + c2 + c3;
11: p.cost = c1 ∗ moveCost + c2 ∗ pushCost + c3 ∗

moveCost;
12: p.minCost = c2 ∗ pushCost+ c3 ∗moveCost;
13: p.o = o;
14: p.d = d;
15: Po,d ⇐ Po,d ∪ {p};
16: end if
17: end while
18: return p ∈ Po,d with min p.cost;

All the techniques above reduce the necessary calculations
for finding a path with low cost to the goal. Our experiments
were performed with both the baseline as well as the opti-
mized algorithm. We found no difference in the final plans
calculated by the algorithms. In the following section we
present examples and statistics for results.

IV. EXPERIMENTS AND DISCUSSION

We evaluated our algorithms in dynamic simulation using
srLib [3]. First, we give four representative domains with 3
to 50 obstacles and explain algorithm operation. Second, we
collect statistics from 10 randomized experiments with 10-20
obstacles and compare performance. While the baseline and
optimized algorithms generated identical robot decisions, the
computation times were significantly lower for the latter.

Fig. 1 is a typical scenario that demonstrates how the
robot replans given new information. Fig. 5 and Fig. 6 are
two interesting examples showing that small differences on
the map can significantly affect decisions. In Fig. 5(a) the
robot initially thinks that there exists a less expensive path
to the goal by going around object 1 (o1). After detecting
object 3 (o3) the robot continues to circumnavigate o3 until
its finds that the cost of returning and pushing o1 is lower
in comparison with the length of a path around o3. Failing
to push the unmovable o1, the cost of returning and pushing
o2 are still less than bypassing o1. The robot finally reaches
the goal by pushing o2. In Fig. 6(a) the robot does not know
that all the paths to the goal that do not push o2 are blocked.
It proceeds around o1 until it detects o3 close to the goal.
At this point, the cost of returning to push o2 is very high
and the robot explores a greater region of space. The robot
makes more attempts to push before it is confident that the
estimated value of returning to push o2 is less than the cost
of further exploration.

2

3

1

(a) Initial (b) Goal

Fig. 5. (a) The robot sees object 3 at early stage. (b) The robot goes back
to push when the free path becomes expensive due to new obstacles.

1

2

3

(a) Initial (b) Goal

Fig. 6. (a) The robot moves around object 1 initially because it expects
free path before detecting object 3. (b) The robot realizes all the paths are
blocked so it returns and tries pushing different objects.

In order to evaluate improvements against the baseline
algorithm by each of the three optimizations we use three
metrics. In the following list, for each optimization, the first
bullet is the cost of the optimized algorithm and the later
one is the cost of the baseline. We compare these two values
to measure the improvement due to each optimization.

1) Optimization 1 - Recalculation triggering
• Number of steps on which the path is blocked
• Number of steps during the entire navigation

2) Optimization 2 - Limited A* calls
• Number of A* calls
• Number of all possible push steps

3) Optimization 3 - Reduce candidate objects
• Number of actions after filtering by minCost
• Number of all candidate actions

We conducted experiments on 10 solvable configurations
with random placements of random numbers of obstacles,
ranging from 10 to 20. The result summarized in Table
I shows that most computation can be saved since it has
no influence on the robot’s decision. The performance of
Optimization 1 is highly dependent on the density of obsta-
cles and the robot’s trajectory. If the robot’s plan is always
blocked by new obstacles, recalculation is triggered often.
Optimization 2 demonstrates that only a few candidate push
steps are potential solutions for a given action. Hence, many
A* calls can be avoided. Finally, Optimization 3 shows that
the set of candidate actions, representing candidate objects
can be reduced by 80% by considering overall plan cost.

TABLE I
COMPUTATIONAL ADVANTAGE FOR EACH OPTIMIZATION

Optimizations Triggering Limit Calls Reduce #Cand
Avg Optimized Cost 52.4 473.7 395.2
Avg Base Cost 224.1 19588.3 2033.6
Min Improvement 67% 97% 75%
Max Improvement 85% 98% 88%
Avg Improvement 76% 98% 81%

Fig. 7. Example with 50+ objects.

Fig. 7 and Fig. 8 demonstrate that more information does
not necessarily imply that equally more actions need to
be evaluated. In Fig. 8, the optimized curve grows slowly
because as new objects are detected, some old objects can
be ignored. Similar to [5], our optimization only recomputes
actions relevant to surrounding areas, or actions that will
potentially reduce the cost. Thus, as the robot explores
more areas, the difference between the two curves in Fig.
8 becomes larger.

Our algorithm models human-like learning behaviors when
faced with obstacles with a logical process for machine
intelligence. When searching for solutions with partial infor-
mation, humans intuitively choose the near solutions rather
than far ones. Once an action is confirmed useless, there
is no need to reevaluate it repeatedly as long as the action
will only cost more with more information. Also, in our
model, the robot has to interact with objects to learn their
movability. After failing to move the unmovable objects, the
robot considers other actions. This process resembles natural
human behavior.

V. CHALLENGES

The domain of NAMO with incomplete information has
unsolvable problems. For example, in Fig. 9(a), the robot
first pushes object 2 and intends to move directly to the
goal. Unfortunately, in Fig. 9(b), the robot detects object 3
and tries to push object 3. Since object 3 is unmovable, the
robot can never reach the goal, even with more information.
However, if the robot knows object 3 beforehand, it will
push object 1 first to avoid blocking itself. Given only partial
information, the robot cannot avoid all the negative effects
resulted from reconfigurations. Thus, local solutions will not
always solve the global problem.

0 302
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Optimized Baseline

Distance Traveled (# of steps)

of

 A
ct

io
ns

 E
va

lu
at

ed

Fig. 8. Growth of action evaluations with more information in Fig. 7.

(a) Initial (b) Failed

Fig. 9. Objects 1 and 2 are movable. Object 3 is static. (a) The robot
pushes object 2 and creates a new path. (b) The new obstacle isolates the
robot outside the region that contains the goal.

Our algorithm can not solve problems like Fig. 10, which
requires pushing two obstacles to create new paths. It will
first push objects 3 and 4 and realize that they are static.
Simply pushing either object 1 or 2 does not create any new
openings. However, if the robot considers manipulation of
multiple objects within a single action, it is possible to solve
the problem as shown in Fig. 10(b).

In summary, our approach faces two major challenges.
First, given the premise that partial information is complete,
the best solution for the currently known environment does
not necessarily solve the global problem. Reconfigurations
can even block the solution. Second, our algorithm requires
an appropriate metric to evaluate the cost of reconfigurations.
To address them, future directions include: 1) Find more solid
evaluations for moving and pushing cost; 2) Allow manip-
ulations on multiple objects or multiple actions on a single
object to create new paths; 3) Use current knowledge with
new information to predict effects on the overall environment
instead of always assuming no obstacles in unknown area.

VI. CONCLUSION

In this paper, we explored NAMO in unknown environments.
We proposed an algorithm that only reevaluates actions if
the current plan is intersected by a newly detected object
or becomes invalid due to wrong assumptions such as the
movability of an object. The algorithm also only evaluates
objects that have promise to yield a better solution by
saving the values of previously calculated plans. The actual
calculation of a push action is optimized by setting an
upper bound on the number of simulated pushes and only
performing A* if a new opening in the map has appeared.

(a) Initial (b) Solution

Fig. 10. Objects 1 and 2 are movable. Objects 3 and 4 are static. (a)
An example that can not be solved by our algorithm. (b) Object 1 must be
moved first in order to create space to push object 2.

We showed that the algorithm is not only capable of
finding a path in an unknown environment with movable and
static objects based on partial knowledge but also reduces
the number of necessary calculations. Furthermore, we were
not able to detect any difference in the final plan to the
baseline approach explained in section III-A. However, our
approach is also limited by the naive assumption about the
environment. Future work includes more precise prediction
on environments and better evaluation of actions.

REFERENCES

[1] P. Chen and Y. Hwang. Practical path planning among movable
obstacles. In In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 444–449, 1991.

[2] E. Demaine, J. O’Rourke, and M. L. Demaine. Pushpush and push-1
are np-hard in 2d. In In Proceedings of the 12th Canadian Conference
on Computational Geometry, pages 211–219, 2000.

[3] Robotics Lab in Seoul National University. Snu robotics library.
http://r-station.co.kr/forum/.

[4] S. Koenig. Goal-Directed Action with Incomplete Information. PhD
thesis, 1997.

[5] S. Koenig and M. Likhachev. Improved fast replanning for robot
navigation in unknown terrain. In in Proceedings of the International
Conference on Robotics and Automation, pages 968–975, 2002.

[6] S. LaValle. Robot motion planning: A game-theoretic foundation.
Algorithmica, 26(3-4):430–465, 2000.

[7] Y. Li and T. Li. A unified approach to planning versatile motions for
an autonomous digital actor. JACIII, 12(3):277–283, 2008.

[8] V. Lumelski and A. Stepanov. Dynamic path planning for a mobile
automaton with limited information on the environment. IEEE
Transactions on Automatic Control, AC-31(11):1057–1063, 1986.

[9] J. Ng and T. Bräunl. Performance comparison of bug navigation
algorithms. J. Intell. Robotics Syst., 50(1):73–84, 2007.

[10] P. Pirjanian. Behavior coordination mechanisms – state-of-the-art,
1999.

[11] P. Pirjanian. The notion of optimality in behavior-based robotics, 1999.
[12] A. Stentz. Optimal and efficient path planning for partially-known

environments. In In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 3310–3317, 1994.

[13] A. Stentz. The focussed d* algorithm for real-time replanning. In
In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 1652–1659, 1995.

[14] M. Stilman and J. Kuffner. Navigation among movable obstacles:
Real-time reasoning in complex environments. In Proceedings of
the 2004 IEEE International Conference on Humanoid Robotics
(Humanoids’04), volume 1, pages 322 – 341, December 2004.

[15] M. Stilman and J. Kuffner. Planning among movable obstacles with
artificial constraints. In WAFR, pages 119–135, 2006.

[16] M. Stilman, K. Nishiwaki, S. Kagami, and J. Kuffner. Planning and
executing navigation among movable obstacles. In IEEE/RSJ Int.
Conf. On Intelligent Robots and Systems (IROS 06), pages 820 – 826,
October 2006.

[17] G. Wilfong. Motion planning in the presence of movable obstacles.
In SCG ’88: Proceedings of the fourth annual symposium on Compu-
tational geometry, pages 279–288, New York, NY, USA, 1988. ACM.

