
Chapter 8
Autonomous Manipulation
of Movable Obstacles

Mike Stilman

Abstract In this chapter we describe recent progress towards autonomous manipula-

tion of environment objects. Many tasks, such as nursing home assistance, construc-

tion or search and rescue, require the robot to not only avoid obstacles but also move

them out if its way to make space for reaching the goal. We present algorithms that

decide which objects should be moved, where to move them and how to move them.

Finally, we introduce a complete system that takes into account humanoid balance,

joint limits and fullbody constraints to accomplish environment interaction.

8.1 Introduction

Humanoid robots would be much more useful if they could move obstacles out of

the way. In this section, we address the challenges of autonomous navigation among

movable obstacles (NAMO), present algorithms and evaluate their effectiveness in

simulation and present a successful implementation of NAMO on a humanoid robot.

Traditional motion planning searches for collision freepaths from a start to a goal.

However, realworld domains like search and rescue, construction, home robots and

nursing home assistance contain debris, materials clutter, doors and objects that need

to be moved by the robot. Theoretically, one can represent all possible interactions

between the robot and movable objects as a huge search. We will present two meth-

ods that use state space decomposition and heuristic search to simplify the problem

and find practical solutions in common environments.

The ability to solve NAMO problems has direct applications in domains that

require robot autonomy for safety and assistance. Consider a search and rescue mis-

sion to extract the victims of a natural disaster such as Hurricane Katrina. Already

robots enter these environments to minimize the exposure of humans to unstable

structures, gases and other hazards. However, collapsed rubble and objects displaced

by floodwaters cause previously navigable passages to become blocked. In solving

NAMO, the robot examines its environment, decides which objects must be moved

and clears a way to further progress. Human safety is one of many motivations for

Mike Stilman
Georgia Tech, Atlanta, GA, USA e-mail: mstilman@cc.gatech.edu

205

206 M. Stilman

Figure 8.1 Planned solution to a navigation problem that manipulates an environment object

NAMO. Consider the comfort and self-reliance of the elderly and disabled. In 2006,

Nursing Economic reported that the United States shortage of nurses would grow

to eight times the current size by the year 2020 [1]. Robots that help patients get

around, reach for medicine and food alleviate this need and provide independence

as well as personal autonomy. Yet, in contrast to laboratories and factories, human

domains have movable objects that are often misplaced. In Figure 8.1, even a chair

in front of a table challenges the robot to NAMO.

8.1.1 Planning Challenges

We begin our analysis of the NAMO domain as an instance of geometric motion

planning [2]. During planning, we assume that the geometry and kinematics of the

environment and the robot are known. We also assume that there is no uncertainty

in sensing and the effects of robot actions. These assumptions are softened during

implementation through active modeling and replanning. We represent objects and

robot links as polyhedrons. The environment objects are classified as either fixed or

movable.

Formally, the environment is modeled as a 2D or 3D Euclidian space that con-

tains the following items:

• OF = {F1, . . . ,Ff } - a set of polyhedral Fixed Obstacles that must be avoided.

• OM = {O1, . . . ,Om} - a set of Movable Obstacles that the robot can manipulate.

• R - a manipulator with n degrees of freedom represented by polyhedral links.

While paths may not be explicitly parameterized by time, we will use the variable t
to refer to a chronological ordering on states and operations. At any time t, the world

state Wt defines the position and orientation of the robot links and each object. We

represent the world state as follows:

Wt = (t,rt ,qt
1,q

t
2, . . . ,q

t
m).

8 Autonomous Manipulation of Movable Obstacles 207

Given an initial configuration W 0 of the robot r0 and each movable obstacle q0
i , the

goal is to achieve a final configuration r f for the manipulator.

8.1.2 Operators

In order to achieve the goal configuration the robot is permitted to change its own

configuration and possibly the configuration of one grasped obstacle at any time

step. Between time steps, any change to the robot joints must be continuous. We

therefore interpret any “change” as an action that follows a path or trajectory.

We can distinguish between two primitive operators or actions: Navigate and

Manipulate. Each action is parameterized by a path τ(ri,r j) that defines the motion

of the robot between two configurations: τ : [0,1]→ r where τ[0] = ri and τ[1] = r j.

The Navigate operator refers to contact-free motion. While the robot may be in

sliding contact with an object, its motion must not displace any objects by collision

or friction. Navigate simply moves the robot joints as specified by τ:

Navigate : (Wt ,τ(rt ,rt+1)) →Wt+1. (8.1)

When the robot motion affects the environment by displacing an object, Oi, we refer

to the action as Manipulate. The manipulate operator consists of two paths: one for

the robot and one for Oi. Since the object is not autonomous, the object path is

parameterized by the robot path and the initial contact or grasp Gi ∈ G(Oi). The set

G(Oi) consists of relative transformations between the robot end-effector and the

object that constitute contact.

Manipulate : (Wt ,Oi,Gi,τ(rt ,rt+1)) →Wt+1. (8.2)

Distinct Gi lead to different object motions given the same end-effector trajectory.

We let τo = ManipPath(Gi,τ) be the interpretation of the path for the object during

manipulation according to the constraints imposed by the contact. Manipulate maps

a world state, contact and path to a new world state where the robot and Oi have been

displaced. The action is valid when neither the robot nor object collide or displace

other objects. Validity is also subject to the constraints discussed in Section 8.1.3.

The two action descriptions point to a general formulation for interacting with

environment objects. The robot iterates a twostep procedure. First, it moves to a

contact state with the Navigate operator and then applies a Manipulate operator to

displace the object. The robot also uses Navigate to reach a goal state.

8.1.3 Action Spaces

In Section 8.1.2 we left the parameters for Manipulate open to interpretation. This

is consistent with our focus on deciding a high-level movement strategy for the robot

208 M. Stilman

in Sections 8.2 and 8.3. In this Section we give three classes of parameterizations

for manipulating objects. In each case, the class translates the trajectory of the robot

into a motion for the object. We point out the relative advantages and disadvantages

of the classes with regard to modeling requirements, generality and reliability.

Grasping (Constrained Contact): The simplest method for translating robot mo-

tion into object motion can be applied when the object is rigidly grasped by the

robot. The Constrained Contact (CC) interpetation of our actions relates them di-

rectly to Transit and Trans f er operators described by Alami [3]. A grasped object

remains at a fixed transform relative to the robot end-effector. To move an object,

the robot must first Navigate to a grasping configuration and then Manipulate.

In addition to requiring collision free paths, a valid CC Manipulate operator

constrains the initial state of the robot and object. Typically the contact must be a

grasp that satisfies form closure. These criteria indicate that a desired motion of the

robot will not cause it to release the object [4]. Such grasps may either be specified

by the user or computed automatically [5]. It is also possible to constrain grasps

with regard to robot force capabilities.

The advantages of CC are in interpretability and invariance to modeling error.

The disadvantage is in generality. We easily predict the possible displacements for

an object by looking at robot and object geometry. Furthermore, an accurate geo-

metric model is typically the only requirement for ensuring reliable execution after

grasping. However, some objects, such as large boxes, are difficult or impossible to

grasp. Constrained environments may also restrict robot positions to make grasping

impossible or require the end-effector to move with respect to the object.

Pushing (Constrained Motion): Manipulation that does not require a grasp with

closure is called non-prehensile [4]. Constrained Motion CM is a subclass of non-

prehensile Manipulate operators. Given any contact between the robot and object

CM restricts the path that the manipulator can follow in order to maintain a fixed

transform between the end-effector and the object.

The most studied form of CM manipulation relies on static friction during push-

ing [6, 7]. At sufficiently low velocities static friction prevents the object from slip-

ping with respect to the contact surface. Given the friction coefficient and the friction

center of the object we can restrict robot paths to those that apply a force inside the

friction cone for the object.[6]

Constrained motion is more general than CC manipulation, however it relies on

more detailed modeling. In addition to geometry, this method requires knowledge

of friction properties. An incorrect assessment would lead to slip causing unplanned

online behavior. CM is also less interpretable than CC since it is difficult to visualize

the space of curves generated by local differential constraints.

Manipulation Primitives (MP): The Manipulate operator can be unconstrained

in both grasp and motion. Morris and Morrow give taxonomies for interactions be-

tween a robot end-effector and an object [8, 9]. These include grasping/pushing and

add other modes of interaction that allow translational or rotational slip.

8 Autonomous Manipulation of Movable Obstacles 209

Methods that do not guarantee a fixed transform between the robot and the object

rely on forward simulation of the object dynamics. Interaction with the robot is

simulated to determine the displacement of the object. We experimented with MP
in [10] by commanding translation and allowing slip in rotation. In some cases a

parameterized MP yields solutions where grasping and pushing cannot.

Further generality requires even more accurate dynamic modeling of the object

for forward simulation. By allowing slip it is desirable that online sensing be used

to close the loop and ensure that the object path is closely followed. The motions

generated by constraining different degrees of freedom are not unique. Primitives

can be restricted to a subset of significant motions in a given environment.

All three classes of object motion interpret the robot trajectory as an object trajec-

tory. We presented them in order of increasing generality and decreasing reliability.

Intuitively, less constraint in contact and motion leads to greater demands on model

accuracy. In theory one can combine these operators to achieve generality and sta-

bility whenever possible. Practically, Manipulate operators can be selected based

on the geometry of the environment. A smaller set of permitted interactions restricts

the possible displacements for the object and reduces the branching factor of search.

8.1.4 Complexity of Search

In contrast to a mobile robot, the branching factor of search for humanoid robots

relies on two modes of interaction. In addition to choosing paths for Navigate, the

robot chooses contacts and paths for Manipulate operators. An even greater chal-

lenge to branching comes from the size of the state space. The robot must plan the

state of the environment including all the positions of movable objects. Wilfong first

showed that a simplified variant of this domain is NP-hard, making complete plan-

ning for the full domain computationally infeasible [11]. More recent work demon-

strated NP-completeness results for trivial problems where square blocks can trans-

lated on a planar grid [12].

In order to better understand the source of complexity, consider a simplified grid

world that contains a robot and m obstacles as shown in Figure 8.2. Suppose we

attempt a complete search over the robot’s action space. Let the configuration of

the robot base be represented by CR = (x,y), with resolution n in each direction.

The generic size of the robot C -space |CR| = O(n2). Analogously, for each object

|Oi| = O(n2). The full space of possible environment configurations is the product

of these subspaces, CR ×O1 ×O2 × . . .×ON , and therefore has O(n2(N+1)) world

states. The size of the search space is exponential in the number of objects that

occupy the robot’s environment.

The size of the configuration space relates directly to the complexity of a com-

plete search over the robot’s actions. In Figure 8.2, the robot can translate to an ad-

jacent square, grasp an adjacent movable block and move while holding the block.

The total number of possible actions at any time is nine: four directions of motion,

210 M. Stilman

(a) (b)

(c) (d)

Figure 8.2 Simple NAMO problems on a planar grid: (a) N: 3, Moved: 0, States Searched: 4,840;
(b) N: 3, Moved: 2, States Searched: 14,637; (c) N: 4, Moved: 2, States Searched: 48,264; (d) N:
4, Moved: 3, States Searched: 32,258

four directions of grasping and one release. For simplicity, we assign equal cost to

all actions and apply breadth-first search (BFS) to find a sequence of actions that

gives the robot access to the goal.

In Figure 8.2(a), although no obstacles are moved, the search examines 4840

distinct configurations before reaching the goal. Note that our search remembers

and does not revisit previously explored world states. While there are only 9×5 =
45 possible placements of the robot, every obstacle displacement generates a new

world state where every robot position must be reconsidered. A change in the world

configuration may open formerly unreachable directions of motion for the robot or

for the objects.

To a human, Figure 8.2(c) may look more like Figure 8.2(b) than Figure 8.2(d).

A previously static obstacle is replaced by a movable one. The additional movable

obstacle is not in the way of reaching the goal. However, breadth-first search takes

three times longer to find the solution. These results generalize from simple search

to the most recent domain independent action planners. Junghanns [13] applied the

Blackbox [14] planner to Sokoban problems where a robot pushes blocks on a grid.

The AIPS planning competition winner showed a similar rise in planning time when

adding only a single block.

The most successful planners for puzzle problems such as the 15-puzzle, Tow-

ers of Hanoi and Sokoban benefit significantly from identifying and pre-computing

solutions to patterns of states [15, 16, 13]. In highly structured problems, these pat-

terns can be recognized and used as heuristics or macros for search. Such methods

are likely to also succeed in grid world NAMO. However, our interest is in NAMO

8 Autonomous Manipulation of Movable Obstacles 211

as a practical robot domain. Arbitrary object geometry and higher granularity action

sets make pre-computation infeasible for any significant portion of subproblems.

In the context of geometric planning, sampling based methods such as proba-

bilistic roadmaps and rapidly-exploring random trees have been applied to problems

with exponentially large search spaces [17, 18]. These methods are most effective

in expansive spaces where it is easy to sample points that significantly expand the

search tree [19]. NAMO problems typically have numerous narrow passages in the

state space. In Figure 8.2, among thousands of explored actions only one or two ob-

ject grasps and translations make progress to the goal. Section 8.2 will discuss the

narrow passages that exist in NAMO planning and use them to guide search.

8.2 NAMO Planning

8.2.1 Overview

In Section 8.1 we defined the NAMO domain and noted the complexity of motion

planning with movable obstacles. While complete planning for NAMO may be in-

feasible, this section gives a resolution complete algorithm for an intuitive subclass

of problems. To arrive at this algorithm we first give a configuration space interpre-

tation of our domain. We observe the inherent structure of environments that consist

of disjoint components of free space. This observation leads to the definition of a

linear class of problems and an abstract graph algorithm for solving them. Finally,

we give a practical variant of this algorithm, prove its validity and give experimental

results in domains with nearly 100 movable objects.

8.2.2 Configuration Space

To understand the structure of NAMO and related spatial reasoning tasks, let us first

interpret this problem in terms of the configuration space [20]. Let CW be the space

of all possible Wt . During a Navigate operation, the robot can only change its own

configuration. Hence we denote a subspace or slice of CW :

CR(Wt) = ({r},qt
1,q

t
2, . . . ,q

t
m). (8.3)

While CR includes all possible configurations for the robot, some collide with static

or movable obstacles. The free space of valid robot configurations is parameterized

by the locations of movable obstacles. To make this relationship explicit:

A(q) = {x ∈ Rk|x is a point of object A in configuration q}. (8.4)

212 M. Stilman

For any set of obstacle points S in Rk, a configuration space obstacle in CA is

the set XA(S) = {q ∈ CA|A(q)∩ S �= /0}. Let q be a configuration of A and p be a

configuration of object B. Since two objects cannot occupy the same space in Rn,

X is symmetric:

p ∈ XB(A(q)) ⇒ B(p)∩A(q) �= /0 ⇒ q ∈ XA(B(p)). (8.5)

To simplify notation we define the following: X Oi
R (Wt)= XR(Oi(qt

i)) and X Oi
Oj

(Wt)
= XOj (Oi(qt

i)) represent obstacles due to Oi in CR and COj , respectively. For

any set of obstacle points S in Rk, a configuration space obstacle in CR is the set

XR(S) = {r ∈ CR|R(r)∩S �= /0}. Lastly, XA(B) is the complement of XA(B) in CA.

The free space of a robot, C f ree
A (Wt), is the set of configurations where the object

is not in collision with fixed or movable obstacles. Eq. 8.6 defines C f ree
R (Wt) and

C f ree
Oi

(Wt) as sets of collision free configuration for the robot and movable objects.

Figure 8.3(a) shows the free configuration space C f ree
R (Wt) for a circular robot.

C f ree
R (Wt) =

⋂
k

XR(Fk)
⋂

i

X Oi
R (Wt) C f ree

Oi
(Wt) =

⋂
k

XOi(Fk)
⋂

Oj �=Oi

X
Oj

Oi
(Wt)

(8.6)

We can use the C -space representation to identify valid Manipulate and Navigate
operators. Navigate is valid if and only if its path is collision free:

τ(s) ∈ C f ree
R (Wt) ∀s ∈ [0,1]. (8.7)

Equations 8.8 – 8.12 validate a Manipulate operator. In addition to satisfying colli-

sion free motion manipulation must end with the object in a statically stable place-
ment C place

Oi
(Wt) ⊆ C f ree

Oi
(Wt) (Equation 8.11). Equation Eq. 8.12 ensures that the

robot does not collide with obstacle Oi. In our 2D examples, we assume gravity is

orthogonal to the object plane and hence C place
Oi

(Wt) = C f ree
Oi

(Wt).

τ(s) ∈
⋂
k

XR(Fk)
⋂
j �=i

X
Oj

R (Wt) ∀s ∈ [0,1] (8.8)

τOi(s) ∈ C f ree
Oi

(Wt) ∀s ∈ [0,1] (8.9)

τOi(0) = qt
i (8.10)

τOi(1) ∈ C place
Oi

(Wt) (8.11)

R(τ(s))∩Oi(τOi(s)) = /0 ∀s ∈ [0,1]. (8.12)

8 Autonomous Manipulation of Movable Obstacles 213

8.2.3 Goals for Navigation

Having defined our domain in terms of configuration space we can begin to make

useful observations about the planning problem. So far, we have looked at Manip-
ulate and Navigate operators independently. However, the most interesting aspect

of NAMO is the interdependence of actions. For instance, in order for the robot to

manipulate an object it must be within reach of the object. It is not always possible

to make contact with an object without previously moving another one. In this sec-

tion we define non-trivial goals for navigation and use them to constrain subsequent

manipulation.

First, consider the two robot configurations depicted in Figure 8.3(a). There exists

a collision free path τ(r0,r1) that validates Navigate(W0,τ(r0,r1)). Finding this

path is a typical problem for existing motion planners. Equation 8.13 generalizes

this relationship to all robot configurations that are accessible from rt in one step of

Navigate:

C acc
R (Wt) = {r j ∈ C f ree

R (Wt)| exists τ(rt ,r j) s.t. ∀s(τ[s] ∈ C f ree
R (Wt)}. (8.13)

Furthermore, the configurations in C acc
R (Wt) can all be reached from one another.

∀ri,r j ∈ C acc
R (Wt) exists τ(ri,r j) s.t. ∀s(τ[s] ∈ C acc

R (Wt)). (8.14)

The space of accessible configurations is lightly shaded in Figure 8.3(a). We can

compute configurations that belong to this set using grid-based wavefront propaga-

tion [21].

Accessible configurations are feasible goals for navigation. Likewise, contact

configurations are feasible starting states for manipulation. Any class of Manipu-
late operators in Section 8.1.3 restricts the initial robot configuration such that robot

motion will result in the displacement of the object. For instance, form closure re-

quires the end-effector to surround part of the object, and pushing demands surface

contact.

We defined valid contacts G(Oi) as a set of end-effector positions relative to Oi.

Given the object configuration, qt
i, this set maps to absolute positions for the end-

effector. Absolute positions map to robot configurations via inverse kinematics (IK):

C cont
R (Oi,Wt) = IK(G(Oi),Wt). (8.15)

In Figure 8.3(b) the table can be grasped at any point on the perimeter. The shaded

area represents C cont
R (Table1,W 0) as a set of feasible positions for the robot base

that make it possible to grasp the object. Figure 8.3(c) illustrates the intersubsection

of C acc
R and C cont

R . These configurations are object contacts that are accessible to the

robot in Wt .

C AC
R (Oi,Wt) = C acc

R (Wt)
⋂

C cont
R (Oi,Wt). (8.16)

The set C AC
R (Oi,Wt) represents useful goals for the Navigate operator in Wt . There

are two cases. When C acc
R (Wt) contains the goal state, NAMO reduces to a path plan

214 M. Stilman

(a) (b) (c)

Figure 8.3 Simulated 2D NAMO CR-space for a circular robot: (a) A,B∈C acc
R (W 0); (b) G(Oi)→

C cont
R (Oi,W t); (c) C acc

R (W t)∩C cont
R (Oi,Wt)

to the goal. Otherwise, at least one object must be manipulated prior to reaching the

goal. Since Navigate only displaces the robot, C acc
R (Wt) and C cont

R (Oi,Wt) do not

change after the operation for any Oi. By definition C AC
R (Oi,Wt) is not affected.

Navigate(Wt ,τ(rt ,rt+1)) must satisfy rt+1 ∈ C AC
R (Oi,Wt) for some Oi in order to

make progress.

8.2.4 Goals for Manipulation

In Section 8.2.3 we saw that the contact states for manipulation constrain useful

goals for Navigate. We also know that the subsequent Manipulate operation can only

be applied from one of these states to one of the accessible objects. In this section

we look at how the navigation space can be used to select goals for manipulation.

These concepts form the basis for our first planner in the NAMO domain.

In general, there is no method for identifying non-trivial manipulation. Unlike

Navigate, any valid Manipulate operator changes the state of the world and the

set of accessible configurations. Even if the change seems to decrease immediate

accessibility it is possible that manipulation opens space for a future displacement

of another object. Some manipulation actions, however, are more clearly useful than

others. To identify them, let us return to the sets of configurations defined in Section

8.2.3.

We already observed that C acc
R ∈ C f ree

R is a subspace of configurations that can

be reached from one another by a single Navigate action. Suppose that the robot was

in a free configuration outside of C acc
R . There would also be a set of configurations

accessible to the robot. In fact, as shown in Figure 8.4(b), we can partition the robot

free space, C f ree
R , into disjoint sets of robot configurations that are closed under

Navigate operators: {C1,C2, . . . ,Cd}. The goal configuration lies in one of these

subsets, CG.

Partitioning the free space results in an abstraction for identifying useful manipu-

lation subgoals. Consider the effect of Manipulate in Figure 8.4(c). After the action,

8 Autonomous Manipulation of Movable Obstacles 215

(a) (b) (c)

Figure 8.4 NAMO CR-space partitioned into components: (a) C1 = C acc
R (W 0); (b) C f ree

R Compo-
nents; (c) Keyhole solution

configurations in C2 become valid goals for Navigate. The illustration shows part of

the solution to a keyhole in this NAMO problem.

Definition 8.1. A keyhole, K(W 1,Ci), is a subgoal problem in NAMO that specifies

a start state, W 1, and a component of free space, Ci. The goal is to find a sequence

of operators that results in W 2 s.t. every free configuration in Ci is accessible to the

robot:

Ci ∩C f ree
R (W 2) ⊂ C acc

R (W 2) and Ci ∩C f ree
R (W 2) �= /0. (8.17)

To restrict the number of obstacles moved in solving a keyhole we define a keyhole
solution according to the maximum number of permitted Manipulate operators.

Definition 8.2. A k-solution to K(W 1,Ci) is a sequence of valid actions including at

most k Manipulate operators that results in W 2 satisfying Equation 8.17.

Manipulating obstacles to solve keyholes is useful because it creates passages in the

robot’s navigation space which open to entire sets of valid navigation goals. Rather

than considering individual actions, we can simplify a NAMO task as follows: The
robot must resolve a sequence of keyholes until rT ∈CG at some future time T .

8.2.5 Planning as Graph Search

With the introduction of useful subgoals for Navigate and Manipulate operators we

now describe a conceptual planner that applies these goals to solving NAMO. First,

we present an intuitive class of linear problems for which the planner is resolution

complete. Next we describe the local search method used by our planner and give

the planning algorithm.

216 M. Stilman

8.2.5.1 Linear Problems

NAMO problems have numerous movable obstacles and exponentially as many

world states. However, typically the number of free space components is signifi-

cantly smaller. In this section we identify a class of problems that reduces the com-

plexity of NAMO to choosing and solving a sequence of keyholes.

Notice that the solution to one keyhole may interfere with solving another by

occupying or blocking parts of C f ree. Taking into account the history of how a robot

entered a given free space component returns planning complexity to a search over

all obstacle displacements. We therefore introduce a class of problems where key-

holes can be solved independently.

Definition 8.3. A NAMO problem, (W0,r f), is linear of degree k or Lk if and only

if:

1. There exists an ordered set of n ≥ 1 distinct configuration space components,

{C1, . . . ,Cn} such that Cn = CG and C1 = C acc
R (W0).

2. For any i(0 < i < n), any sequence of k-solutions to {K(Wj−1,Cj)| j < i} results

in Wi−1 such that there exists a k-solution to K(Wi−1,Ci).
3. If n > 1, any sequence of k-solutions to {K(Wj−1,Cj)| j < n} results in Wn−1 s.t.

there exists a k-solution to K(Wn−1,Cn) that results in Wn where r f ∈ C f ree
R (Wn).

For at least one sequence of free space components this inductive definition ensures

that once the robot has reached a configuration in Ci it can always access Ci+1.

Condition (3) guarantees the existence of a final keyhole solution such that the goal

is in CG ∩C f ree
R (W n). Although this definition allows for arbitrary k, in this section

we will focus on problems that are linear of degree 1 or L1.

Even when only one Manipulation operator is permitted, it is often possible to

find a keyhole solution that blocks a subsequent keyhole. For instance, in Figure

8.4(c), consider turning the table to block a future displacement of the couch. We

propose to broaden the scope of problems that can be represented as L1 by con-

straining the action space of the robot. We have considered two restrictions on the

placement of objects:

Occupancy Bounds: Any displacement of an object must not occupy additional

free space that is not accessible to the robot:X Oi
R (Wt+1)⊂(X Oi

R (Wt)∪C acc
R (Wt)).

This implies that any solution to (Wt−1,Ct) results in Wt s.t. Ct ∩C f ree
R (Wt) =Ct .

Minimal Intrusion: Paths used for Manipulate operators are restricted to being

minimal with respect to a chosen criterion. The criteria could include the di-

mension of inaccessible C R occupied by a displaced object, the distance of the

displacement or a simulation of expected work to be used in manipulation.

Occupancy bounds create an intuitive classification for problems. If there is a se-

quence of free space components where each Ci can be accessed using only the

space of Ci−1 then the problem is linear. Minimal intrusion is less intuitive since it

requires some notion of the extent to which a previous component could be altered

and still yield sufficient space for a keyhole solution. However, this method is more

8 Autonomous Manipulation of Movable Obstacles 217

powerful since it allows the robot to take advantage of space in both Ci in addition

to Ci−1 for placing objects.

Regardless of restrictions, L1 includes many realworld problems. Generally,

C f ree
R is connected and allows navigation. L1 problems arise when the state is per-

turbed due to the motion of some object. An L1 planner should detect this object

and restore connectivity.

8.2.5.2 Local Manipulation Search

Solving a linear NAMO problem requires us to determine a sequence of keyholes

that connect free space components. First, we introduce a simple search routine for

accessing C2 ⊂ C f ree
R from rt ∈Cacc

R (Wt) by moving a single object Oi. The routine

returns Wt+2, a robot path, τM , and the total cost c or NIL when no path is found.

MANIP-SEARCH(Wt ,Oi,C2): we apply Section 8.2.3 to find a discrete or sam-

pled set of contact states for Manipulate: C AC
R (Wt). Starting from all distinct con-

figurations rt+1 = Gi we perform a uniform cost (breadth first) search over paths

τM that validate Manipulate(Wt ,Oi,Gi,τM(rt+1,rt+2)). The object path τo is de-

termined by the specific action space. The search terminates when Wt+2 satisfies

Equation 8.17 or every reachable state has been examined. If r f ∈ C2 the search

must also ensure that r f ∈C f ree
R (Wt+2).

Local uniform cost search operates with any cost function and ensures that the re-

turned path will minimize this function over the discrete action set. When restricting

the action space to minimize intrusion (8.2.5.1) the cost should reflect the intrusion

criteria such as occupied inaccessible space. We have optimized for path length in

quasi-static planning and work or energy usage for dynamic manipulation.

Although MANIP-SEARCH is a simple method, efficient recognition of goal sat-

isfaction is non-trivial. We provide one possible solution in [10].

8.2.5.3 Connecting Free Space

Given a routine for accessing a component of free space we turn to the global task

of solving linear problems. In this section we introduce the global CONNECTFS

algorithm.

First, define a set FC of disjoint free space components Ci ⊂ C f ree
R . CS and CG

refer to the components containing the robot and the goal, respectively. Our algo-

rithm keeps a search tree, FCT , and a queue of unexpanded nodes Q. Each node is

a pair (Ci,Wt) and each edge is an obstacle Ol . FCT and Q are initialized with the

node (CS,W 0). At each step we remove a node from Q, N = (Ci,Wt) and expand

the tree:

1. Construct the set CN ⊂ FC of all free space components, Cj, such that (Cj,W ′)
is not an ancestor of N in FCT for any W ′.

218 M. Stilman

(a) (b) (c)

Figure 8.5 Construction of FCT structures the solution for L1 problems: (a) L1 NAMO Problem;
(b) FCT with solution path; (c) Solution

2. For each Cj ∈ CN find the set of neighboring obstacles ON(Cj) such that there

exists a path from rt to some r j in Cj that collides only with the obstacle:

ON(Cj) = {Ol|∃r j ∈Cj,τ(rt ,r j) : ∀s(τ[s] ∈
⋂
k

XR(Fk)
⋂
j �=l

X
Oj

R (Wt))}. (8.18)

3. Remove Cj ∈ CN . For each Ol ∈ ON(Cj) let S(Ol) = (Wt+2,τ,c) be the result

of calling Manip−Search(Wt ,Ol ,Cj). If at least one call succeeds choose S(Ol)
with least cost and add the node N′ = (Cj,Wt+2), edge e(N,N′) = Ol to FCT .

4. Repeat step 3 until CN = /0.

We repeat the expansion of nodes until NG = (CG,W T) is added to FCT for some

W T or every node has been removed from Q (Figure 8.5).

8.2.5.4 Analysis

Our description of CONNECTFS illustrates the potential for using a configuration

space decomposition of NAMO problems to select subproblems that can easily be

solved by a motion planner. Furthermore, the construction of CONNECTFS allows

for a simple proof of its relationship to the L1 problem class. First, we must show

that any 1-solution to a keyhole must move a neighboring object as defined in step

2.

Lemma 8.1. If there exists a 1-solution to K(W T ,Cj) which displaces Ol then there

exist r j ∈Cj and τ(rT ,r j) such that for all s, τ[s] ∈⋂
k XR(Fk)

⋂
j �=l X

Oj
R (W T).

Proof. To simplify notation let At =
⋂

k XR(Fk)
⋂

j �=l X
Oj

R (Wt). Assume there ex-

ists a 1-solution consisting of a sequence of n operators, each parameterized by a

robot path τ(rt ,rt+1) where t refers to any time step such that (T ≤ t ≤ T + n).
Since only Ol is displaced between T and T +n, all other obstacle configurations

are unchanged: qt
j = qT

j for all j �= l and t. Hence, At = AT for all t. We now show

that every operator path in the 1-solution satisfies τ[s] ∈ AT for all s.

8 Autonomous Manipulation of Movable Obstacles 219

Manipulate(Wt ,Ol ,Gi,τM(rt ,rt+1)) : the operator is valid only if the path satisfies

τM[s] ∈ At for all s (Equation 8.8). Hence, the path satisfies τM [s] ∈ AT for all s.

Navigate(Wt ,τN(rt ,rt+1)) : the operator is valid only if the path satisfies τN [s] ∈
C f ree

R (Wt) for all s (Equation 8.13). Since C f ree
R (Wt) =

⋂
k XR(Fk)

⋂
j X

Oj
R (Wt),

we have C f ree
R (Wt) ⊂ At . Therefore, τN [s] ∈ At and consequently τN [s] ∈ AT for

all s.

Furthermore, Equation 8.17, guarantees the existence of r j ∈ Cj ∩C f ree
R (W T+n).

Since Cj∩ C f ree
R (W T+n) ⊂ C acc

R (W T+n), there exists τ j(rT+n,r j) such that τ j[s] ∈
C f ree

R (W T+n) for all s(Equation 8.13). Therefore τ j[s] ∈ AT+n = AT for all s.

Finally, we construct a path τD(rT , . . . ,rT+n,r j) by composing the operator paths

from the 1-solution with τ j. Since τ[s] ∈ AT for all s in all subpaths of τD, we also

have τD[s] ∈ AT for all s.

Lemma 8.2. CONNECTFS is resolution complete for problems in L1.

Proof. Let Π be a solvable problem in L1. We show that CONNECTFS will find

a solution. By definition of L1, there exists an ordered set Ω of n disjoint C f ree
R

components {CS, . . . ,CG}. We show that CONNECTFS will add (CG,W T) to FCT
by induction. In the base case, (CS,W 0) ∈ FCT .

Assume (Ci−1,Wt) has been added to FCT such that Ci−1 ∈Ω , i < n and Wt was

produced by a sequence of 1-solutions to {K(Wj−1,Cj)|0 < j < i}. By the definition

of L1 there exists a 1-solution with n operators to K(Wt ,Ci) (Equation 8.17). Hence,

starting in Wt , there is an operator sequence with one Manipulate that displaces

some obstacle Ol and results in Wi such that Ci ∩C f ree
R (Wi) ⊂ C acc

R (Wi).
When (Ci−1,Wt) is expanded, Lemma 8.1 guarantees that there exist ri ∈ Ci

and a path τD(rt ,ri) in Wt that only passes through Ol . Consequently, in step 2

of CONNECTFS, Ol will be added to ON(Ci). Step 3 will call Wt+2 = MANIP-

SEARCH(Wt ,Ol ,Ci). Since MANIP-SEARCH is resolution complete over the ac-

tion space, it will find a Manipulate path that satisfies Equation 8.17. Therefore,

(Ci,Wt+2) will be added to FCT .

By induction, (CG,W T) will be added to FCT . Regarding termination, let d be

the number of free space components in FC. Since all nodes added to the tree must

contain distinct free space components from their ancestors the tree has a maximum

depth of d (step 1). Furthermore, each node at depth i(1 ≤ i ≤ d) has at most d − i
children. Either (CG,W T) is added or all nodes are expanded to depth d and no

further nodes can be added to Q. Hence CONNECTFS terminates in finite time and

is resolution complete for problems in L1.

The construction of FCT in CONNECTFS also allows us to optimize for various cri-

teria. First of all, we can find solutions that minimize the number of objects moved

simply by choosing nodes from Q according to their depth in the tree. Nodes of

lesser depth in the tree correspond to less displaced objects. We can also associate a

cost with each node by summing the cost of the parent node and the cost returned by

MANIP-SEARCH. When a solution of cost c is found, we would continue the search

220 M. Stilman

until all nodes in Q have cost c′ > c. The lowest cost solution would be minimal

with respect to MANIP-SEARCH costs.

8.2.5.5 Challenges of CONNECTFS

Although CONNECTFS reduces the search space from brute force action-space

search, its primary purpose is to convey the utility of the reduced dimensional con-

figuration space structure. Practically, a NAMO domain could have large numbers

of objects and free-space components. Constructing the tree would require an algo-

rithm to determine all neighboring objects for all components of free-space. Fur-

thermore, we would need to call MANIP-SEARCH to verify every potential access.

This seems unreasonable for a navigation planner since we may only need to move

one or two objects to reach the goal.

We believe that this observation is critical for developing a real-time system.

In particular, the complexity of the problem should depend on the complexity of

resolving keyholes that lie on a reasonable navigation path, not on the complexity of

unrelated components of the world. In other words, since the purpose of NAMO is

navigation, a NAMO problem should only be difficult when navigation is difficult.

Section 8.2.6 gives one answer to this challenge. We introduce a heuristic al-

gorithm that implicitly follows the structure of CONNECTFS without graph con-

struction. To do so, we again turn to the navigational substructure of the problem.

Previously, we observed that every L1 plan is a sequence of actions that access en-

tire components of C f ree
R . Lemma 8.1 also showed that obstacles that lie in the path

of Navigate should be considered for motion. We will now consider extending such

paths through the rest of C R until they reach the goal and using them to guide the

planner in subgoal selection.

8.2.6 Planner Prototype

With the results from the previous section, we now formulate a simple and effec-

tive planner for the NAMO domain: SELECTCONNECT. The planner is a best-first

search that generates fast plans in L1 environments. Its heuristic, RCH, is a naviga-

tion planner with relaxed constraints. RCH selects obstacles to consider for motion.

Following the algorithm description, we show that its search space is equivalent to

that of CONNECTFS (Section 8.2.5.3). With best-first search, optimality is no longer

guaranteed. However, the planner is much more efficient and resolution complete for

problems in L1. If memory and efficiency are less of a concern, optimality can be

regained with uniform-cost search.

8 Autonomous Manipulation of Movable Obstacles 221

8.2.6.1 Relaxed Constraint Heuristic

The relaxed constraint heuristic (RCH) is a navigation planner that allows collisions

with movable obstacles. It selects obstacles for SC to displace. RCH is parameter-

ized by Wt , AvoidList of (Oi,Ci) pairs to avoid, and PrevList of visited Cj. After

generating a path estimate to the goal, it returns the pair (O1,C1) of the first obsta-

cle in the path, and the first component of free space. If no valid path exists, RCH

returns NIL. Since RCH does not move obstacles, all obstacle positions are given

in terms of Wt .

RCH is a modified A∗ search from rt to r f on a dense regular grid of C R(Wt)
which plans through movable obstacles. RCH keeps a priority queue of grid cells xi.

Each cell is associated with a robot configuration, ri, the cost of reaching it, g(xi),
and the estimated cost for a solution path that passes through ri, f (xi). On each

iteration, RCH removes xi with least f (xi) from the queue and expands it by adding

valid adjacent cells x j with the costs in Equation 8.19. Let e(ri,r j) be the transition

cost of entering a cell r j ∈ X
Oj

R from ri /∈ X
Oj

R , where e is estimated from the size

or mass of O j. h(x j,x f) estimates goal distance and α relates the estimated cost of

moving an object to the cost of navigation:

g(x j) = g(xi)+ (1−α)+αe(ri,r j),

f (x j) = g(x j)+ h(x j,x f). (8.19)

As shown in Algorithm 8.1, RCH restricts valid transitions. We use exclusively con-
tained to refer to ri contained in only one obstacle: ri ∈ exc X Oi

R ⇒ (O j �= Oi then

ri /∈ X
Oj

R).

Definition 8.4. A path P = {r1, . . . ,rn = r f } is Valid(Oi,Cj) if and only if (Oi,Cj) /∈
AvoidList and O j /∈ PrevList and the path collides with exactly one obstacle prior to

entering Cj. Alternatively, there exists m < n such that: rm ∈Cj and for all ri where

i < m either ri ∈ X Oi
R or ri ∈ C f ree

R .

Since the validity of a transition depends on the history of objects/free-space en-

countered along a path, we expand the state with a dimension for each obstacle and

C f ree
R component. The states searched are triples xi = (ri,Oi,Cj). Oi is the first ob-

stacle encountered or 0 if one has not been encountered. Cj is likewise 0 or the first

free space component.

Lemma 8.3. If there exists a Valid(OF ,CF) path then RCH will find a solution.

Proof. Assume there exists a Valid(OF ,CF) path P for some OF , CF then the RCH

will find a path. After adding (rt ,0,0) to Q, line 14 expands the children of this

state adding all ri ∈ C acc
R to Q as (ri,0,0). Line 15 allows the transition from any

(ri,0,0) to any adjacent (r j,OA,0) where r j ∈ X OA
R . Lines 10 and 11 expand any

state (ri,OA,0) to (r j,OA,0) where r j ∈ C f ree
R or r j is exclusively in OA. Hence

every state that can be reached after entering only one obstacle will be added to Q
as (ri,OA,0).

222 M. Stilman

Algorithm 8.1 Pseudo-code for RCH.

Algorithm:RCH (W t ,AvoidList,PrevList, r f)

Closed ← /01
Q ← MAKE-PRIORITY-QUEUE(rt,0,0)2
while Q �= empty do3

x1 = (r1,OF ,CF) = REMOVE-FIRST(Q)4
if(x1 ∈Closed) continue5
if(r1 = r f and OF �= 0 and CF �= 0)return (OF ,CF)6
Closed append (x1)7
foreach r2 ∈ ADJACENT(r1) do8

if(CF �= 0) ENQUEUE(Q, (r2,OF ,CF)); continue9

if(OF �= 0 and r2 ∈ C f ree
R) ENQUEUE(Q, (r2,OF ,0))10

if(OF �= 0 and r2 ∈ excX OF
R) ENQUEUE(Q, (r2,OF ,0))11

if(OF �= 0 and r2 ∈Cis.t.Ci /∈ PrevList and (OF ,Ci) /∈ AvoidList)12
ENQUEUE(Q, (r2,OF ,Ci))13

if(OF = 0 and r2 ∈ C f ree
R)ENQUEUE(Q, (r2,0,0))14

if(OF = 0 and r2 ∈ excX Oi
R)ENQUEUE(Q, (r2,Oi,0))15

end
end
return NIL16

From Definition 8.4 we know that there exists such a state (rm−1,OF ,0) in P that

can be reached after entering only one obstacle. Furthermore, when (rm−1,OF ,0)
is expanded to rm the conditions on line 12 will be satisfied since rm ∈ CF and

CF /∈ PrevList and (OF ,CF) /∈ AvoidList. Hence (rm,OF ,CF) will be added to Q
on line 13. Finally, line 9 will continue to expand this state to all adjacent states

as (ri,OF ,CF). Since path P exists, there exists some path from rm to the goal and

therefore (r f ,OF ,CF) will be found. We know the process will terminate since states

are not revisited by addition to Closed and the sizes of {ri},{Oi} and {Ci} are finite.

Lemma 8.4. If RCH finds a solution then there exists a Valid(OF ,CF) path.

Proof. Suppose RCH has found a solution path P terminating in (r j,OF ,CF) on line

6. Lines 10–15 do not permit any transition from a state (r j,OF ,CF) to (ri,OF ,0) or

from (r j,OF ,0) to (ri,0,0). Consequently we can separate P into three segments. P1

consists of states (ri,0,0), P2 contains (ri,OF ,0) and P3 contains (ri,OF ,CF). Any

transition from the last state in P2 to the first in P3 must have satisfied the condition

on line 12, hence CF /∈ PrevList and (OF ,CF) /∈ AvoidList. Furthermore, every state

in P2 must be either in C f ree
R or exclusively in X OF

R as added by lines 13, 10 and

11. Finally, every state in P1 must be in C f ree
R since it was added by line 15. Hence

the path P satisfies the second criterion of Definition 8.4.

While this algorithm appears more complex than A∗ the branching factor is un-

changed. Furthermore, only objects that can be reached without colliding with other

objects are taken into account. To increase efficiency, membership in Closed on line

8 Autonomous Manipulation of Movable Obstacles 223

6 can be checked using (ri,Oi) rather than the full state. Since there are no restric-

tions on transitions from non-zero Ci path existence will not depend on its value.

8.2.6.2 High-level Planner

Algorithm 8.2 gives the pseudo-code for SELECTCONNECT (SC). The planner

makes use of RCH and MANIP-SEARCH, as described in Section 8.2.5.2. It is a

greedy heuristic search with backtracking. The planner backtracks locally when the

object selected by RCH cannot be moved to merge the selected Ci ⊂ C f ree. It back-

tracks globally when all the paths identified by RCH from Ci are unsuccessful.

SC calls FIND-PATH to determine a Navigate path from rt to a contact, rt+1. The

existence of τN(rt ,rt+1) is guaranteed by the choice of contacts in MANIP-SEARCH.

Algorithm 8.2 Pseudo-code for SelectConnect.
Algorithm:SelectConnect(W t ,PrevList, r f)
AvoidList ← /01
if x f ∈ C acc

R (W t) then2
return FIND-PATH(Wt ,x f))3

end
while (O1,C1) ← RCH(W t ,AvoidList,PrevList, r f) �=NIL do4

(W t+2,τM,c) ← MANIP-SEARCH(Wt ,O1,C1)5
if τM �= NIL then6

FuturePlan ← SELECTCONNECT(Wt+2,PrevList append C1, r f)7
if FuturePlan �= NIL then8

τN ← FIND-PATH(W t ,τM[0])9
return ((τN ,τM) append FuturePlan)10

end
end
AvoidList append(O1 ,C1)11

end
return NIL12

8.2.6.3 Examples and Experimental Results

We have implemented the proposed NAMO planner in a dynamic simulation envi-

ronment. The intuitive nature of SELECTCONNECT is best illustrated by a sample

problem solution generated by the planner. In Figure 8.6(a), we see that C f ree
R is

disjoint–making this a NAMO problem. Line 4 of SC calls RCH, the heuristic sub-

planner. RCH finds that the least cost Valid(Oi,Cj) path to the goal lies through

Oi = Couch. The path is shown in Figure 8.6(b). RCH also determines that the free-

space component to be connected contains the goal. Line 6 calls MANIP-SEARCH

to find a motion for the couch. Figure 8.6(c) shows the minimum cost manipulation

224 M. Stilman

(a) (b) (c)

(d)

Figure 8.6 Walk-through of an autonomous SELECTCONNECT: (a) Problem; (b) RCH; (c) Key-
hole solution; (d) Final plan

path that opens the goal free-space. Finally, SELECTCONNECT is called recursively.

Since r f is accessible, line 3 finds a plan to the goal and completes the procedure

(Figure 8.6(d)). The remainder of the pseudo-code iterates this process until the goal

is reached and backtracks when a space cannot be connected.

Figure 8.6(d) is particularly interesting because it demonstrates our use of C f ree
R

connectivity. As opposed to the local planner approach employed in PLR [22],

MANIP-SEARCH does not directly attempt to connect two neighboring points in

C R. MANIP-SEARCH searches all actions in the manipulation space to join the con-

figuration space components occupied by the robot and the subgoal. The procedure

finds that it is easiest to pull the couch from one side and then go around the table

for access. This decision resembles human reasoning and cannot be reached with

existing navigation planners.

Figure 8.6(a) also demonstrates a weakness of L1 planning. Suppose the couch

was further constrained by the table such that there was no way to move it. Although

the table is obstructing the couch, the table does not explicitly disconnect any free-

space and would therefore not be considered for motion.

Figure 8.7 is a more complex example with backtracking. In the lower frame,

we changed the initial configuration of the table. The initial call to RCH still plans

through the couch, however, MANIP-SEARCH finds that it cannot be moved. The

planner backtracks, calling RCH again and selects an alternative route.

8 Autonomous Manipulation of Movable Obstacles 225

Figure 8.7 The generated plan output by our dynamic simulation NAMO planner is illustrated by
the time-lapse sequences on the right

Figures 8.7 and 8.8 show the scalability of our algorithm to problems with more

movable objects. While computation time for Figure 8.6(a) is < 1s, the solutions for

Figures 8.7 and 8.8 were found in 6.5 and 9s, respectively (on a Pentium 4 3 GHz).

Notice that the planning time depends primarily on the number of manipulation

plans that need to be generated for a solution. Although the largest example contains

90 movable obstacles, compared with 20 in Figure 8.7, there is no sizable increase

in the solution time.

Finally, consider the simple examples for which BFS examined tens of thousands

of states in Figure 8.2. The solution to (a) is found instantly by the first heuristic

search after examining 15 states. Both (b) and (c) are solved after considering 147

states. This number includes states considered during heuristic search, Navigate path

search and the verification of connectivity at each step of Manipulate. (d) is solved

after 190 states.

8.2.6.4 Analysis

SELECTCONNECT has clear advantages over CONNECTFS in terms of both average

computation time and ease of implementation. Implemented as best first search,

SELECTCONNECT is not globally optimal. Note, however, that for each choice of

226 M. Stilman

Figure 8.8 A larger scale example consisting of 90 movable obstacles. Two separate plans are
computed and demonstrated in our dynamic simulation.

obstacle, the planner still selects a motion with least cost. If planning efficiency

and space are not the primary concern, uniform cost or A∗ variants would restore

optimality. We now prove L1 completeness for SELECTCONNECT.

Lemma 8.5. Any solution found by SC(Wt ,PrevList,r f) is valid in NAMO.

Proof. This can be seen from the construction of the algorithm. By induction: in the

base case SELECTCONNECT returns a single valid Navigate(Wt ,τN(rt ,r f)) on line

3. Such a path exists by definition of C acc
R (Wt) (8.13).

Assume that the call to SELECTCONNECT(Wt+2,PrevList,r f) on line 11 returns

a valid FuturePlan. SC(Wt , . . .) pre-pends FuturePlan with Navigate(Wt ,τN(rt ,
rt+1)) and Manipulate(Wt+1,Ol,Gi,τM(rt+1,rt+2)) operators. τM is valid due to

the completeness of MANIP-SEARCH (8.2.5.2) and τN is valid since rt+1 = τM[0] ∈
C AC

R (Wt) by construction of MANIP-SEARCH and Definition 8.16. Hence, SC(Wt ,
PrevList, r f) also returns a valid plan. By induction every plan returned by

SELECTCONNECT is valid.

Lemma 8.6. Suppose there exists a 1-solution to K(Wt ,CF) which displaces OF
and CF /∈ PrevList. Then the call to SELECTCONNECT(Wt ,PrevList,r f) will either
find a valid solution to NAMO(Wt ,r f) or call MANIP-SEARCH(Wt ,OF ,CF).

8 Autonomous Manipulation of Movable Obstacles 227

Proof. Since there exists a 1-solution to K(Wt ,CF), Lemma 8.1 ensures that there

exist rF ∈ CF and τ1(rt ,rF) such that for all s, τ1[s] ∈ ⋂
k XR(Fk)

⋂
j �=F X

Oj
R (W T).

Let τ2 be any path in C R from rF to r f . Let τF be the compound path (τ1,τ2).
On the first call to RCH(Wt ,AvoidList,PrevList,r f) (line 4), AvoidList is empty.

We are given that CF /∈ PrevList. Let rm ∈ CF be the first state in τ1 that is in CF .

Such a state must exist since rF ∈ CF . Since all τF states, ri (i < m), cannot be in

any obstacle other than OF , they are either in C f ree
R or exclusively in OF , satisfying

the conditions of Definition 8.4. Hence, τF is Valid(OF ,CF). Since a Valid(OF ,CF)
path exists, RCH will find a path (Lemma 8.3).

The loop on lines 4-12 will terminate only if SC succeeds in solving NAMO on

line 8 or RCH fails to find a path on line 4. Line 12 of RCH ensures that on each

iteration the pair (O j,Cj) returned by RCH is distinct from any in AvoidList. This

pair is added to AvoidList. Since there are finite combinations of obstacles and free

space components, the loop must terminate. However, τR will remain Valid(OF ,CF)
and RCH will find paths until it returns (OF ,CF). Therefore either a NAMO solution

will be found or RCH will return (OF ,CF). In the latter case, line 6 of SC calls

MANIP-SEARCH(Wt ,OF ,CF).

Theorem 8.1. SELECTCONNECT is resolution complete for problems in L1.

Proof. Let NAMO(W 0,r f) be an L1 problem. We will show that SELECTCON-

NECT(W 0,r f) finds a solution. In the base case, x f ∈ C acc
R (Wt) and line 3 yields

the simple Navigate plan. In the following, let Ω = {C1, . . . ,Cn} be an ordered set

of disjoint free space components that satisfies Definition 8.3 for the given problem.

Assume SELECTCONNECT(Wi−1,r f) has been called such that Wi−1 is a world

state resulting from a sequence of 1-solutions to K(Wj−1,Cj)|Cj ∈ Ω , j < i). By

definition of L1 there exists a 1-solution to K(Wi−1,Ci) that moves some obsta-

cle OF (Definition 8.3). From Lemma 8.6 we have that SC(Wi−1,r f) will ei-

ther find a sequence of valid actions that solve NAMO(Wi−1,r f) or call MANIP-

SEARCH(Wi−1,OF ,Ci) on line 6. Since MANIP-SEARCH is resolution complete it

will return a solution (τM ,W i,c) where Wi is the next state in the sequence of solu-

tions to K(Wj−1,Cj)|Cj ∈Ω , j ≤ i). SELECTCONNECT(Wi−1,r f) will call SELECT-

CONNECT(Wi,r f).
By induction, if SELECTCONNECT does not find another solution it will find the

solution indicated by Ω . Each recursive call to SC adds a Ci to PrevList. When

all Ci are added to PrevList, there are no Valid(OF ,Ci) paths and RCH will return

NIL (Lemma 8.4). Hence the maximum depth of recursion is the number of Ci.

Analogously, each loop in lines 4–12 adds a distinct pair (Ci,Cj) to AvoidList such

that when all pairs are added RCH will return NIL. Hence, the maximum number

of calls made from each loop is the number of such pairs and the algorithm will

terminate.

228 M. Stilman

Figure 8.9 SELECTCONNECT solves the open problem considered difficult by Chen

8.2.7 Summary

This section describes initial progress towards planning for NAMO. First, we gave

a configuration space representation for NAMO problems. Our analysis of the re-

lationship between action spaces for Navigate and Manipulate operators gave us

tools for constructing a conceptual planner and a practical solution for problems

in the intuitive L1 problem class. Search complexity was reduced from the number

of objects in the scene to the difficulty of the Navigation task. The planner solved

problems with nearly 100 movable obstacles in seconds.

In addition to high-dimensional problems, SELECTCONNECT is also effective in

domains with complex geometry. Previously, Chen [22] presented one difficult puz-

zle problem shown in Figure 8.9. The PLR planner pushes the love seat into C3 and

cannot recover. Using C f ree
R connectivity, SELECTCONNECT considers connecting

C3 as one of the options and successfully solves the example.

Clearly, there are many problems that do not fall into the L1 class. These prob-

lems require us to consider cases where moving one object affects the robot’s ability

to move another. Further work on this topic is presented in [23]. Sections 8.3 and

8.4 will show how decisions to move objects are applied in autonomous execution.

8.3 Humanoid Manipulation

So far our investigation of NAMO has been largely theoretical. We showed that it

is possible to decide the movement strategy for a robot that can manipulate obsta-

cles in a large cluttered environment. In this section we will address the control

problem of executing the desired motion on a humanoid robot. The robot used in

our experiments is the Kawada HRP-2. This robot has the capacity for navigation

and manipulation of large objects. Its anthropomorphic kinematics make it suitable

for interacting in human environments. Furthermore, implementation on HRP-2 al-

lowed us to study the interaction between navigation and manipulation from the

perspective of multi-objective control.

We are primarily interested in manipulation of large objects such as carts, ta-

bles, doors and construction materials. Small objects can be lifted by the robot and

8 Autonomous Manipulation of Movable Obstacles 229

modeled as additional robot links. Heavy objects are typically supported against

gravity by external sources such as carts, door hinges or construction cranes. Yet,

neither wheeled objects nor suspended objects are reliable sources of support for the

robot. Large, heavy objects are interesting because they require the robot to handle

significant forces while maintaining balance. We present a method that generates

trajectories for the robot’s torso, hands and feet that result in dynamically stable

walking in the presence of known external forces.

In NAMO, the robot interacts with unspecified objects. Consequently the interac-

tion forces are rarely known. While small variations can be removed by impedance

control and online trajectory modification, larger correlated errors must be taken

into account during trajectory generation. To account for this, we give a method for

learning dynamic models of objects and applying them to trajectory generation. By

using learned models we show that even 55 kg objects, equal to the robot’s mass,

can be moved along specified trajectories.

8.3.1 Background

Early results in humanoid manipulation considered balance due to robot dynamics.

Inoue [24] changed posture and stance for increased manipulability and Kuffner [25]

found collision free motions that also satisfied balance constraints. These methods

did not take into account object dynamics. In contrast, Harada [26] extended the

ZMP balance criterion for pushing on an object with known dynamics. Harada [27]

also proposed an impedance control strategy for pushing objects during the double

support phase of walking. We focus on continuous manipulation during all walking

phases.

With the introduction of preview control by Kajita [28], Takubo [29] applied this

method to adapting step positioning while pushing on an object. Nishiwaki [30, 31]

proposed that the external forces from pushing could be handled by rapid trajectory

regeneration. Yoshida [32, 33] locally modified the planned path for a light carried

object to avoid collisions introduced by applying preview control. Our work extends

beyond pushing and modification to realizing a desired trajectory for a heavy object.

Furthermore, in contrast to assuming that objects are known or external sources of

error, we learn about their response to our force inputs.

Recently, most studies of interaction with unknown objects have been kinematic.

Krotkov [34] and Fitzpatrick [35] studied impulsive manipulation to detect the affor-

dances of various objects through different sensing modalities. Stoychev [36] con-

sidered learning to use objects for specific behaviors and Christiansen [37] learned

to manipulate an object between a set of discrete states. However, for large objects

the controller must account for the continuous dynamic effect they have on balance

and stability.

While our focus is on learning the dynamic model of an unknown ob ject, this

paper is closely related to modeling robot dynamics. Atkeson [38] summarizes ap-

proaches to learning or adapting parameters to achieve precise trajectory following.

230 M. Stilman

Friction modeling has been studied extensively as summarized by Canudas [39] and

Olsson [40]. More sophisticated methods for learning the dynamics of tasks in high

dimensional spaces are studied by Atkeson, Moore and Schaal [41, 42].

8.3.2 Biped Control with External Forces

Biped locomotion keeps the robot upright by pushing on the ground with the robot’s

legs. To generate any desired vertical forces the stance foot must be in contact with

the ground. Let the center of pressure or ZMP be the point about which the torques

resulting from all internal and external forces acting on the robot sum to zero. A

necessary condition for maintaining ground contact is that the ZMP be within the

area of the stance foot [43, 44]. If the ZMP leaves the foot, the robot tips about a

foot edge.

The most common method for maintaining the position of the ZMP is by gener-

ating and following trajectories for the robot torso. This method accomplishes two

goals. First, it achieves the desired displacement of the torso and satisfies any kine-

matic constraints. Second, it ensures a desired position for the ZMP throughout the

duration of trajectory execution and therefore implies that the vertical forces neces-

sary for supporting the robot can be effected continuously. In our case, trajectories

are re-computed at 0.15s intervals.

This Section details the control strategy for walking manipulation that takes into

account external forces. The controller consists of three significant elements:

• decoupling the object and robot trajectories;

• trajectory generation satisfying ZMP and object motion;

• online feedback for balance and compliance.

Instantiating these three components lifts control from the 30D robot joint space to

a higher level abstract system that realizes a single object trajectory.

8.3.2.1 Decoupled Positioning

At the highest level, we represent the manipulation task as a system of two bodies.

The object, o, and robot, r, are attached by horizontal prismatic joints to a grounded

stance foot. The stance foot position changes in discrete steps at a constant rate

k = 900 ms. Section 8.3.2.2 computes independent workspace trajectories for xr
and xo. To implement this abstraction we describe how workspace trajectories map

to joint space.

We start the mapping by defining the trajectories for hands and feet relative to

the object. Due to rigid grasp manipulation, the hand positions, plh and plr remain

at their initial displacements from xo. For simpler analysis, the stance foot pst is

fixed relative to xo at each impact. The robot swing foot, psw follows a cubic spline

connecting its prior and future stance positions. To achieve a fixed displacement

8 Autonomous Manipulation of Movable Obstacles 231

(a) (b)

Figure 8.10 Model of the robot and object used in our work: (a) Geometric model; (b) Computa-
tional model

from the object on each step, the object velocity is bounded by the maximum stride

length and step rate. We restrict the values of ẋo in advance.

We also fix the trajectory for the robot torso, ptorso relative to xr. Although the

center of mass position, xr, is a function of all the robot links we assume that xr
remains fixed to ptorso after grasp. This assumption is relaxed in Section 8.3.2.2

through iterative controller optimization. Notice that although many of the link po-

sitions are highly coupled, the two positions of interest xr and xo are not.

Suppose we have workspace trajectories for both xo and xr. The former specifies

trajectories for hands and feet and the latter defines xtorso. Joint values that position

the four ungrounded links are found with resolved rate control [45].
pst → xr 6 Stance leg xr → plh 7 L arm

xr → psw 6 Swing leg xr → prh 7 R arm

These solutions complete the mapping from any valid workspace placement of xr
and xo to robot joints. We compared analytical inverse kinematics (IK) to a gradi-

ent method based on the pseudo-inverse of the robot Jacobian. Analytical IK al-

lowed faster computation, avoided drift and assured that the solutions would satisfy

joint limit constraints. The two chest joint values were constants that maximize the

workspace. Redundancy in the arms is resolved by fixing elbow rotation about the

line connecting the wrist and shoulder.

8.3.2.2 Trajectory Generation

Section 8.3.2.1 gave a mapping from commanded workspace positions of xr and

xo to joint positions. We now focus on workspace control. Given a commanded

trajectory for xo we compute a trajectory for xr that satisfies balance constraints.

We relate ZMPt to stance foot position. Let x be the direction of object motion. zo
is the height of the hands and f is the reflected force. Equation 8.20 introduces zmp
as the ground point around which the torques due to gravity acting on xr, reflected

232 M. Stilman

force from accelerating xr and from the object sum to zero.

τzmp = mrg(xr − zmp)−mrẍrzr − zo f = 0. (8.20)

Solving for zmp yields:

zmp = xr − ẍr
zr

g
− zo f

mrg
. (8.21)

Dynamic balance requires zmp to remain in the robot support polygon. To maximize

error tolerance we seek a trajectory that minimizes the distance between zmp and

the stance foot center zmpd = xst . Recall that xst , and thus zmpd are known given a

trajectory for xo (subsection 8.3.2.1)

Let J0 =∑t(zmpt − zmpt
d)

2 be the performance index for balance. Equation 8.22

further defines β and βd as functions of zmpd and xr respectively.

βd = zmpd +
zo f
mrg

β = xr − ẍr
zr

g
. (8.22)

Substitution yields J0 = ∑t(β t − β t
d)

2. Notice that zmpd is the trajectory of foot

centers and {zo,mr,g} are constants. Hence, assuming that f is known, the trajectory

of future values for βd is fully determined.

Suppose we interpret β as the observation of a simple linear system in xr with the

input
...
x r. For smoothness, we add squared input change to the performance index.

J =
∞

∑
t=1

Qe(β t −β t
d)

2 + R(
...
x t − ...

x t−1)2. (8.23)

We can now determine the optimal
...
x r with preview control [28]. At any time t we

know the error e(t) = β t − β t
d , state x(t) = [xt

r ẋt
r ẍt

r]T and N future β i
d . Stilman

[23] gives the procedure for pre-computing the gains G1, G2 and G3 such that the

incremental control in Equation 8.24 minimizes J:

Δ ...
x t

r = −G1e(t)−G2Δxt
r −

N

∑
i=1

Gi
3(β

t+i
d −β t+i−1

d). (8.24)

The control Δ ...x r is discretely integrated to generate the trajectory {ẍr, ẋr and xr} for

xr. The trajectory for yr is found by direct application of preview control since the

object reflects no forces tangent to x.

Since xr is assumed to be fixed to the robot torso, the generated joint space tra-

jectory still results in zmp tracking error. We incorporate this error into the reference

trajectory and iterate optimization.

8 Autonomous Manipulation of Movable Obstacles 233

8.3.2.3 Online Feedback

Section 8.3.2.2 described the generation of a balanced trajectory for xr given xo.

To handle online errors we modify these trajectories online prior to realization with

robot joints. Online feedback operates at a 1 ms cycle rate.

Accumulated ZMP tracking error can lead to instability over the course of execu-

tion. Therefore, a proportional controller modifies the acceleration of xr to compen-

sate for ZMP errors perceived through the force sensors at the feet. These corrections

are discretely integrated to achieve xr position.

The trajectory for xo, or the robot hands, is modified by impedance. We use a

discrete implementation of the virtual dynamic system in Equation 8.25 to compute

the offset for xo that results from integrating the measured force error F:

F = miẍo + diẋo + ki(xo − xd
o). (8.25)

Impedance serves two goals. First of all, we ensure that hand positioning errors do

not lead to large forces pushing down on the object. Since the robot does not use the

object for support, di and ki are set low for the z direction.

Second, we prevent the robot from exceeding torque limits when the trajectory

cannot be executed due to un-modeled dynamics. The position gain for the x direc-

tion trades a displacement of 10 cm for a 100 N steady state force. This allows for

precise trajectory following and soft termination when the trajectory offset exceeds

force limits.

8.3.3 Modeling Object Dynamics

Section 8.3.2 described our implementation of whole body manipulation given a

known external force. However, when the humanoid interacts with an unspecified

object, the reflected forces may not be known in advance. A reactive strategy for

handling external forces might assume that the force experienced when acting on the

object will remain constant for 0.15 s seconds, or the duration of trajectory execu-

tion. In this section we present an alternative method that improves performance by

learning the mapping from a manipulation trajectory to the reflected object forces.

8.3.3.1 Motivation for Learning Models

Modeling addresses two challenges: noise in force sensor readings and the depen-

dence of balance control on future information. The former is common to many

robot systems. While high frequency forces have no significant impact on balance,

low frequency force response must be compensated. The complication is that online

filtering introduces a time delay of up to 500 ms for noise free data. Modeling can

be used to estimate forces without time delay.

234 M. Stilman

For balancing robots such as humanoids, we not only require estimates of cur-

rent state but also of future forces. Typically, a balance criterion such as center of

pressure location (ZMP) is achieved by commanding a smooth trajectory for the

robot COM. [28] demonstrates that accurate positioning of ZMP requires up to 2s

of future information about its placement. Since external forces at the hands create

torques that affect the ZMP, they should be taken into account 2s earlier, during

trajectory generation. Hence, the purpose of modeling is to use known information

such as the target object trajectory to accurately predict its low frequency force re-

sponse in advance. The predicted response is used to generate a smooth trajectory

for the robot COM that satisfies the desired ZMP.

8.3.3.2 Modeling Method

Environment objects can exhibit various kinematics and dynamics including com-

pliance, mechanical structure and different forms of friction. For instance, the tables

and chairs used in our experiments are on casters. Each caster has two joints for

wheel orientation and motion. Depending on the initial orientation of the wheels

the object may exhibit different dynamics. Currently, we do not have a perception

system that can detect and interpret this level of modeling detail. Consequently we

approach this problem from the perspective of finding a simple and effective mod-

eling strategy.

First, we observe that despite the complex kinematic structure of a humanoid

robot, the robot is typically modeled as a point mass attached to the stance foot with

prismatic joints. Likewise, an object can be modeled as a point mass in Equation

8.26. Given experimental data we could compute the mass and friction for an object

and use them to predict force. However, due to uncertainty in caster orientation and

the low velocities of manipulation our experiments showed that even this model was

unnecessarily complex. We did not find a consistent relationship between accelera-

tion and force. Consequently we chose to base our model solely on viscous friction

as shown in Equation 8.27.

f t = mo ẍt
o + c ẋt

o. (8.26)

f t = c ẋt
o. (8.27)

To find c that satisfies this relationship we applied least squares regression on col-

lected data. We executed a trajectory that displaced the object at distinct velocities,

ẋt
o, and measured the force at HRP-2’s hands, f t , at 1 ms intervals. The collected

data is represented in Equation 8.28. The term b was used to remove bias, which

appeared as a constant force offset allowed by impedance control after grasp.[
ẋ1 ẋ2 · · · ẋn

1 1 · · · 1

]T [c
b

]
=
[

f 1 f 2 · · · f n
]T

. (8.28)

8 Autonomous Manipulation of Movable Obstacles 235

(a) (b) (c)

(d) (e) (f)

Figure 8.11 HRP-2 pushes then pulls 30 and 55kg loaded tables: (a) t=0s; (b) t=20s; (c) t=0s; (d)
t=20s; (e) t=28s; (f) t=38s

The solution to this set of over-constrained equations is found simply by applying

the right pseudo-inverse. During data collection we applied a reactive balancing

strategy which assumed a constant force response during a 0.15 s trajectory cycle.

This approach was sufficiently stable for brief interactions.

8.3.4 Experiments and Results

We conducted experiments on model-based whole body manipulation using a

loaded table on casters, as shown in Figure 8.11. The robot grasped the table and

followed a smooth trajectory for xo as generated from a joystick input. Our results

were compared with a rigid grasp implementation of a reactive approach to handling

external forces presented in [31], which assumed that sensed forces would remain

constant. Both methods recomputed the trajectory for xr every 0.15 s, at which time

the reactive strategy updated its estimated force. The reactive method was applied

first to gather data and learn an object model from Section 8.3.3.2. Brief experi-

ments of less than 10 s we necessary to collect the data. We applied both methods

on a series of experiments that included a change of load such that the total mass

ranged from 30 kg to 55 kg.

236 M. Stilman

8.3.4.1 Prediction Accuracy

First, we look at how well our model predicts force. The comparisons in this section

use data from experiments that are not used to build the model. The comparison in

Table 8.3.4.1 shows that the mean squared error between modeled and measured

force is lower than the error of assuming that force remains constant during the

control cycle.

Since preview control takes into account future βd , including predicted force,

next we propose a more accurate prediction measure. Let βd reflect the difference

in predicted and actual force. Preview control is applied to find a trajectory that

compensates for the simulated error. It generates an erroneous xr displacement, xPC
err,

during the 150 ms that the trajectory is active. xPC
err is the expected trajectory error

given the error in force prediction.

The comparison between the expected trajectory error, shown in Figure 8.13 and

Table 8.1, also favors the model-based method. xPC
err decreases if we assume a faster

control cycle. However, even for a 20 ms cycle, we found that error decreases pro-

portionally for both controllers and the ratio of their MSE remains in favor of mod-

eling.

Table 8.1 Prediction Accuracy

MSE Ferr(N) MSE xPC
err(m)

model react model react

30kg 4.44 9.19 .427 .674

55kg 5.21 12.5 .523 .971

Table 8.2 System Stability

ZMP SD (m) Force SD (F)
model react model react

30kg .0214 .0312 11.06 15.79

55kg .0231 .0312 12.15 46.25

8.3.4.2 System Stability

The accuracy of prediction has significant effect on the overall stability of the con-

trolled system. Incorrect predictions affect the trajectories for xr and xo. First con-

sider the resulting ZMP of the robot. While both controllers exhibit a slight offset

in ZMP from grasping the object, the constant error can be removed with integral or

adaptive control. A greater concern is the variance in this error. Figure 8.14 shows

the increased noise in the control signal for ZMP when using the reactive control.

Table 8.2 summarizes this effect.

An even clearer distinction between the two methods is directly reflected in the

noise of the perceived force data. Table 8.2 also shows the variance in the noise given

the offline filtered signal. The difference in noise is clearly seen in Figure 8.12.

8 Autonomous Manipulation of Movable Obstacles 237

Figure 8.12 Comparison of forces experienced with reactive and model-based control.

8.3.5 Summary

We have shown that it is possible to reliably manipulate unknown, large, heavy

objects, such as tables, along specified trajectories with existing humanoid robots.

Our experiments demonstrate a significant improvement both in prediction accuracy

and system stability when using the learned object model for control. We found that

statistical methods such as least squares regression can be used to learn a dynamic

model for the unknown object and use it to improve balance during manipulation.

One of the most convincing results is the accurate force prediction for a 55 kg object

in Figure 8.12(d). Additionally, notice the low noise variance in sensed forces when

using the model based controller.

238 M. Stilman

Figure 8.13 Trajectory error introduced by preview control with erroneous prediction

Figure 8.14 Realized ZMP for identical reference trajectories

Future work should consider merging the feed-forward model with feedback in-

formation. State estimators such as Kalman filters could be used to maximize the

performance of the robot by combining information sources. Furthermore, adaptive

control could be used to handle online changes in friction and mass.

While our experiments were restricted to rigid grasp manipulation for objects on

casters, similar techniques can be applied to very different scenarios. Two important

classes are objects that can be lifted by the robot and objects that are suspended by

cranes rather than carts. The robot can statically estimate the former object mass

by measuring the load after lifting. The latter cannot be lifted and would require a

similar experimental trajectory execution. For suspended objects inertial terms will

likely dominate friction. In this case, we propose estimation of mass and inertia.

We have now presented methods for planning object motion and controlling a

robot to perform the desired movement. Section 8.4 will detail our complete archi-

tecture for NAMO execution.

8.4 System Integration

8.4.1 From Planning to Execution

Having investigated a strategy for NAMO planning and a method for mobile ma-

nipulation by humanoid robots we now turn our attention to merging these elements

into a complete system for NAMO. This section introduces the architecture for our

implementation of NAMO using the humanoid robot HRP-2 shown in Figure 8.15.

8 Autonomous Manipulation of Movable Obstacles 239

(a) (b)

(c) (d)

Figure 8.15 Autonomous execution of NAMO with architecture diagram: (a) t=0s; (b) t=45s; (c)
t=180s; (d) NAMO Architecture

We present the methods used for measuring the environment, mapping world objects

into a planar search space and constructing motion plans for robots. The NAMO

planner used in this section is derived from Section 8.3. The details of control for

robot walking and whole body manipulation were addressed in Section 8.4.

The architecture in this section is distinct from previous humanoid systems plan-

ners which focus on specified tasks such as navigation and manipulation. Sak-

agami, Chestnutt and Gutmann and plan navigation using stereo vision [46, 47, 48].

Kuffner, Harada, Takubo, Yoshida and Nishiwaki generate dynamically stable tra-

jectories for manipulation given an environment model [26, 49, 31, 29]. Brooks rec-

ognizes doors and defines an opening behavior [50]. Existing systems do not allow

the robot to perceive the environment and perform arbitrary manipulation. Our do-

main requires autonomous localization, planning and control for walking, grasping

and object manipulation.

Our implementation was performed in a 25 m2 office setting consisting of tables

and chairs. All movable objects are on casters to simplify the task of manipulation.

This domain is representative of hospitals, homes and nursing homes where heavy

non-wheeled objects are typically stationary. Furthermore, our instrumentation ap-

proach to measurement is feasible in these environments.

240 M. Stilman

8.4.2 Measurement

In order to apply NAMO planning the robot must first acquire a geometric model

of its environment. Our entire system gathers information from three sources: real-

time external optical tracking, joint encoders and four six-axis force sensors. The

force sensors at the feet and hands are discussed in Section 8.6 with regard to closed

loop control. In this Section we focus on external optical tracking for the robot and

movable objects. Individual robot links are positioned by combining tracking for the

robot torso with encoder readings for joint angles.

The most common method for recognizing and localizing indoor objects is visual

registration of features perceived by an onboard camera. Approaches such as the

Lucas-Kanade tracker [51] are summarized by Haralick and Forsyth [52, 53]. While

these methods are portable, Dorfmuller points out that the speed and accuracy of a

tracking system can be enhanced with hybrid tracking by the use of markers [54].

In particular, he advises the use of retro-reflective markers. Some systems use LED

markers [55], while others combine vision-based approaches with magnetic trackers

[56]. Given our focus on planning and control, we chose an accurate method of

perception by combining offline geometric modeling with online localization.

8.4.2.1 Object Mesh Modeling

The robot world model consists of the robot and two types of objects: movable and

static. Static objects cannot be repositioned and must always be avoided. Limited

interaction with static objects prompted us to use approximate bounding box models

to represent their geometry. Movable objects require manipulation during which the

robot must come close to the object and execute a precise grasp. These objects were

represented internally by 3D triangular mesh models.

Our experimental environment contained two types of movable objects (chairs

and tables). To construct accurate models of these objects we used the Minolta Vivid

laser scanner. The resulting meshes shown in Figure 8.16(b) were edited for holes

and processed to minimize the overall polygon count while ensuring that at least one

vertex exists in every 0.125 m3 voxel of the mesh. This simplified object detection

in any given region of 3D space to vertex inclusion.

8.4.2.2 Recognition and Localization

Precise object localization and model fitting was achieved using the EVa Real-Time

Software (EVaRT) with the Eagle Motion Analysis optical tracking system. Each

model was assigned a unique arrangement of retro-reflective markers. Under rigid

body assumptions, any 6D configuration of the object corresponds to a unique set

of configurations for the markers. We define a template as the set of x,y and z coor-

dinates of each marker in a reference configuration.

8 Autonomous Manipulation of Movable Obstacles 241

(a) (b) (c)

Figure 8.16 Off-line modeling and online localization of a chair: (a) Chair and markers; (b) Mesh
model; (c) Real-time overlay

Given positions for unoccluded template, {a1, ...,an}, and localized markers {b1, ...,bn}:

1. Find the centroids (ca and cb) of the template markers points and the observed marker locations.
Estimate the translational offset t̂ = cb−ca. Removing this offset, b′i = bi− t̂ places the markers
at a common origin.

2. Next we define a linear system for the orientation of the object,⎡⎢⎢⎢⎣
aT

1 0
aT

10 aT
1· · ·

aT
n 0

aT
n

0 aT
n

⎤⎥⎥⎥⎦
⎡⎢⎣r̂1

r̂2

r̂3

⎤⎥⎦=

⎡⎢⎢⎣
b′1
b′2...
b′n

⎤⎥⎥⎦ such that bi =

⎡⎢⎢⎣
− r̂T

1 −
− r̂T

2 − t̂
− r̂T

3 −
0 0 0 1

⎤⎥⎥⎦ai

expresses an estimate of the object transform. We solve this system for R̂ online using LQ
decomposition.

Figure 8.17 Object localization procedure.

EVaRT continuously tracks the locations of all the markers to a height of 2 m.

Distances between markers are calculated to 0.3 tracking approximately 60 markers

the acquisition rate is 60 Hz. Matching the distances between markers, EVaRT par-

titioned them among objects and provided our system with sets of marker locations

and identities for each object. The detected markers are rigidly transformed from

the template and permit a linear relationship in the form of a transformation matrix.

Since some markers can be occluded from camera view, we add redundant mark-

ers to the objects and perform pose estimation using only the visible set. Estimation

is a two-step procedure given in Figure 8.17 At this time, we do not enforce rigid-

ity constraints. Even for a system with only four markers, the accuracy of marker

tracking yields negligible shear and scaling in the estimated transformation. The

transform is optimal in minimizing the summed squared 3D marker error.

We refer to the collection of transformed meshes for the movable objects, static

objects and the robot as the world model. Poses for individual robot links are found

242 M. Stilman

by combining joint encoder readings with the tracked position and orientation of the

robot torso. The entire model is continuously updated at 30 hz. Further details and

applications of our approach to mixed reality experimentation can be found in [57].

8.4.3 Planning

The world model, constructed in Section 8.4.2.2, combined with kinematic and geo-

metric models of the robot is sufficient to implement NAMO planning. However, the

search space for such a planner would have 38 degrees of freedom for robot motion

alone. The size of this space requires additional considerations which are taken into

account in Section 8. Presently, we observe that for many navigation tasks the 2D

subspace consisting of the walking surface is sufficiently expressive. In fact, larger

objects such as tables and chairs that inhibit the robot’s path must be pushed rather

than lifted [26, 49]. Hence, their configurations are also restricted to a planar man-

ifold. Reducing the search space to two dimensions makes it possible to apply our

NAMO implementations from Sections 8.3 and 8.4 directly to real environments. To

do so, we map the world model to a planar configuration space. We also introduce a

definition for contact and an abstract action space for the robot.

8.4.3.1 Configuration Space

Mapping the world model into a configuration space that coincides with our previ-

ous NAMO implementations requires us to project all objects onto the ground plane.

Each object is associated with the planar convex hull of the projected mesh vertices.

Figure 8.18 shows the model of a chair projected onto the ground plane. While our

algorithms are general for any spatial representation, the projected space is com-

putationally advantageous since it considers only three degrees of freedom for the

robot and objects. Currently, the space does not allow interpenetration between ob-

jects. Alternative implementations could use multiple planes to allow penetration at

distinct heights.

The robot is represented by a vertical cylinder centered at the robot torso. A 0.3 m

radius safely encloses torso motion. The cylinder projects to a circle on the ground

plane. We pre-compute the navigational configuration space, C R of the robot. Each

C R obstacle (Oi) is a Minkowski sum of the robot bounds with the corresponding

planar object. For navigation, the robot can be treated as a point that moves through

the C -space. Lighter shaded ground regions around projected obstacles in Figure

8.18 are C R obstacles. The robot may walk on the lighter regions but its centroid

must not enter them.

To further decrease computation costs, we used the Bentley–Faust–Preparata

(BFP) approximate convex hull algorithm to compute C R obstacles [58]. The re-

sulting obstacles have significantly fewer vertices and edges while subject to only

8 Autonomous Manipulation of Movable Obstacles 243

(a) (b) (c)

Figure 8.18 Mapping objects into the planning domain: (a) Mesh model; (b) Projection; (c) Con-
tact selection

1% error. Decreasing the number of edges reduces the cost of testing for robot col-

lision. The error is acceptable since we can adjust the radius of robot safety bounds.

8.4.3.2 Contact Selection

As part of NAMO planning, the robot must select locations for contacting movable

objects. Our implementation uses rigid grasp manipulation and automatically se-

lects points for grasps. In our work, we have found three essential criteria for this

selection:

1. Proximity to object perimeter – ensure that the point is in the robot’s workspace

when standing next to the object.

2. Restricted quantity – limit the number of possible interactions to a discrete set of

grasp points to increase the efficiency of planning.

3. Uniform dispersion – provide contact points for any proximal robot configura-

tion.

We introduce one solution for locating such points by interpreting the convex hull

from the previous section as a representation of the object perimeter. Starting at

an arbitrary vertex of this hull, our algorithm places reference points at equidistant

intervals along the edges. The interval is a parameter that we set to 0.2 m.

For each reference point, we find the closest vertex by Euclidian distance in the

full 3D object mesh along the horizonal model axes. The selected vertices are re-

stricted to lie in the vertical range [0.5 m, 1.0 m]. When interpreted as contact points,

we have found that these vertices satisfy the desired criteria for objects such as ta-

bles and chairs. Selected points can be seen in Figure 8.18(c). The robot successfully

performed power grasps of our objects at the computed locations.

More complex objects may be of width outside the operating range or may have

geometry that restricts the locations and orientations of valid grasps. These cases can

be handled by applying a grasp planner such as GraspIt to determine valid contacts.

[5] The proposed criteria can still be optimized by using proximity to the contour

points as a heuristic for selecting grasps.

244 M. Stilman

(a) (b)

Figure 8.19 Simulated example shows NAMO plan and traces of execution: (a) Initial state and
NAMO plan; (b) Traces of execution

8.4.3.3 Action Spaces

So far we have given definitions for the geometry of the configuration space and for

allowable contacts. The NAMO planner also requires us to define the action space

of the robot that will be searched in selecting Navigate and Manipulate operators.

Humanoid walking has the property of being inherently discrete since a stable

motion should not terminate in mid-stride. Each footstep is a displacement of the

robot. One option for planning is to associate the robot base with the stance foot

and directly plan the locations of footsteps [59, 47]. This creates discrete jumps in

the location of the robot base at each change of supporting foot. In our approach,

we define an abstract base and plan its motion along continuous paths. The simplest

mapping of the base trajectory to footsteps places feet at fixed transforms with re-

spect to the base on every step cycle. We found that a horizontal offset of 9 cm from

the base along a line orthogonal to the base trajectory yields repeatable, safe and

predictable robot motion.

The Navigate space consists of base displacements. Since the foot trajectory gen-

erated from base motion must be realizable by the controller, we restricted base mo-

tions to ones that translate into feasible footstep gaits. From any base configuration,

the robot is permitted 41 discrete actions which are tested for collisions with the

C -space obstacles:

1. One 0.1 m translation backward.

2. Twenty rotations in place in the range of 30◦.

3. Twenty 0.2 m translations forward with a rotation in the range of 30◦.

During search, the planner keeps track of visited states. A∗ finds least cost paths and

terminates when all states have been visited.

Having grasped an object Manipulate searches the same space as Navigate. Dur-

ing planning we assume that the object remains at a fixed transform with respect

to the robot base and therefore the stance foot by construction. Our planner distin-

guishes large objects, such as tables, from smaller objects such as chairs. Smaller

objects have less inertia and can be manipulated safely with one arm. Tables, how-

ever, have a significant impact on the robot dynamics and are grasped with two

8 Autonomous Manipulation of Movable Obstacles 245

hands. While both grasps are restricted to the computed contact points, there are

fewer contact configurations for the robot base during a two-handed grasp.

Action definitions complete the description of a NAMO problem and allow us

to apply the planner to solve problems such as the one in Figure 8.19. In this case

we applied SELECTCONNECT. The figure shows light arrows to indicate planned

navigation and dark arrows for manipulation. The robot joint configurations shown

in Figure 8.19(b) interpret planned actions as described in Section 8.3.

8.4.4 Uncertainty

The NAMO planner presented in Section 8.2 assumes that the world conforms to

the actions determined by the planner. While precise modeling and localization of

objects serves to decrease error, significant uncertainty remains during execution.

Planning with uncertainty or in partially known environments is a complex prob-

lem. Erdmann corners the system into a desired state [60]. Stentz efficiently replans

while expanding knowledge of the environment [61]. Kaelbling finds optimally suc-

cessful plans [62]. One or more of these approaches can be adapted to NAMO plan-

ning. In this thesis we present only the necessary solution to uncertainty that makes

execution possible.

We consider the complete NAMO implementation as a hierarchy of high level

action planning, lower level path planning and online joint control. At the lowest

end of the spectrum, insignificant positioning errors can be handled by joint-level

servo controllers. At the highest, a movable obstacle that cannot be moved may

require us to recompute the entire NAMO plan. We propose a minimalist strategy to

error recovery. Each level of the hierarchy is implemented with a strategy to reduce

uncertainty. When this strategy fails, execution is terminated. Further development

should consider reporting the error and considering alternatives at higher levels of

the architecture. Presently, we describe three of the strategies applied in our work.

8.4.4.1 Impedance Control

At the lowest level of the hierarchy uncertainty in our estimate of object mass and

robot positioning is handled with impedance control as described in Section 8.3.2.3.

This controller handles small positioning errors that occur due to robot vibration

and environment interaction, ensuring that the robot does not damage itself or the

obstacle. Impedance limits the forces that the robot can exert in order to achieve the

precise positioning demanded by the planner.

246 M. Stilman

8.4.4.2 Replanning Walking Paths

Since the lowest level of execution does not guarantee precise placement of objects,

it is possible that the navigation paths computed by the NAMO planner will not be

possible after the displacement of some object. Furthermore, since robot trajectories

are executed open loop with regard to localization sensors, the objects and the robot

may not reach their desired placements.

In order to compensate for positioning errors, the path plans for subsequent Nav-
igate and Manipulate actions are re-computed at the termination of each NAMO

action. At this time the planner updates the world model from the optical tracker

and finds suitable paths for the robot. Notice that we do not change the abstract ac-

tion plan with regard to object choices and orderings. We simply adapt the actions

that the plan will take to ensure their success. For Navigate paths we iterate state es-

timation, planning and execution to bring the robot closer to the desired goal. This

iteration acts as a low rate feedback loop from the tracker to the walking control and

significantly improves the robot’s positioning at the time of grasp.

8.4.4.3 Guarded Grasping

Although we have described the execution of Navigate and Manipulate actions as

two essential components of NAMO, bridging these two actions is also an interest-

ing problem. Having navigated to a grasp location, the robot is required to execute

a power grasp of the object at a given contact point. Positioning errors in grasping

can be more severe than manipulation since the object is not yet fixed to the robot

and its location is uncertain.

Having walked up to an object, the robot must grasp it and then walk with it.

HRP-2 reacquires the world model and determines the workspace position for its

hand. It preshapes the hand to lie close to this position and then performs a guarded

move to compensate for any perception error. This process is not only functionally

successful but also approximates human grasping behavior as described in [63].

The initial workspace hand position for grasping is obtained by selecting a point

.05m above the object and 0.05 m closer to the robot (in the direction of robot mo-

tion). The robot moves its hands to this position via cubic spline interpolation from

its estimated state. Subsequently the robot moves its hand downward and forward

to close the 0.05 m gaps. This guarded move is executed using impedance control

to prevent hard collisions and is terminated when the force sensors reach a desired

threshold. We ensure that the robot’s palm is in contact with the top surface of the

object and the thumb is in contact with the outer edge. The remaining fingers are

closed in a power grasp until the finger strain gauges exceed the desired threshold.

8 Autonomous Manipulation of Movable Obstacles 247

Table 8.3 NAMO implementation: run times for planning and execution

NAMO Navigation Execution

Figure 8.15 (real) 0.06 s 0.09 s 63.0 s

Figure 8.19 (simulated) 0.13 s 0.93 s 153.0 s

8.4.5 Results

Our complete NAMO system was successfully applied to a number of simulated

examples such as the one presented in Figure 8.19 as well as the real robot control

problem in Figure 8.15(a). The simulated evaluations involved all planning aspects

of our work, including dynamically stable walking pattern generation for Navigate
and Manipulate actions. In our laboratory experiments, the robot perceived its en-

vironment and autonomously constructed a plan for reaching the goal. After walk-

ing to approach an object, HRP-2 successfully grasped it and walked to create the

planned displacement. Subsequently it was able to reach the desired goal.

Table 8.3 details the high-level NAMO planning time, replanning time for navi-

gation and the total execution time for the two presented examples. Notice that the

NAMO planning time is three orders of magnitude smaller than the actual time for

executing the computed motion. This makes it feasible to view the NAMO system

as a real-time generalization of modern path planning techniques to worlds where

strictly collision free paths are not available.

References

[1] P. Buerhaus, K. Donelan, B. Ulrich, L. Norman, and B. Dittus. State of the Registered Nurse
Workforce in the United States. Nurs Econ, 24(1):6–12, 2006.

[2] J.C. Latombe. Robot Motion Planning. Springer, 1991.
[3] R. Alami, J.P. Laumond, and T. Sim’eon. Two manipulation planning algorithms. In: work-

shop on the algorithmic foundations of robotics, 1994.
[4] M.T. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001.
[5] Andrew T. Miller. GraspIt: A Versatile Simulator for Robotic Grasping. PhD thesis, Dept.

of Computer Science, Columbia University, 2001.
[6] K. M. Lynch and M. T. Mason. Stable pushing: Mechanics, controllability, and planning.

Int J of Robotics Research, 15(6):533–556, 1996.
[7] Michael Erdmann. An exploration of nonprehensile two-palm manipulation. Int J of

Robotics Research, 17(5), 1998.
[8] G. Morris and L. Haynes. Robotic assembly by constraints. In: proceedings of IEEE inter-

national conference on robotics and automation., 4, 1987.
[9] JD Morrow and PK Khosla. Manipulation task primitives for composing robot skills. In:

proceedings of IEEE international conference on robotics and automation, 4, 1997.
[10] M. Stilman and J.J. Kuffner. Navigation among movable obstacles: Real-time reasoning

in complex environments. In: proceedings of IEEE international conference on humanoid
robotics (Humanoids’04) http://www.golems.org/NAMO, 2004.

[11] G. Wilfong. Motion panning in the presence of movable obstacles. In: proceedings of ACM
symposium on computational geometry, pp 279–288, 1988.

248 M. Stilman

[12] E. Demaine and et. al. Pushpush and push-1 are np-complete. Technical Report 064, Smith,
1999.

[13] A. Junghanns and J. Schaeffer. Sokoban: Enhancing general single-agent search methods
using domain knowledge. Artificial Intelligence, 129(1):219–251, 2001.

[14] H. Kautz and B. Selman. BLACKBOX: A new approach to the application of theorem
proving to problem solving. In: AIPS98 workshop on planning as combinatorial search, pp
58–60, 1998.

[15] J.C. Culberson and J. Schaeffer. Searching with pattern databases. Lecture Notes in Com-
puter Science, 981:101–112, 2001.

[16] R.E. Korf. Finding optimal solutions to Rubiks Cube using pattern databases. In: proceed-
ings of the fourteenth national conference on artificial intelligence (AAAI-97), pp 700–705,

1997.
[17] L. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path

planning high-dimensional configuration spaces. IEEE Trans Robotics Automat, 12(4),
1996.

[18] S.M. LaValle and J.J. Kuffner. Rapidly exploring random trees: Progress and prospects. In:
workshop on the algorithmic foundations of robotics, 2000.

[19] D. Hsu, J.C. Latombe, and R. Motwani. Path planning in expansive configuration spaces.
In: proceedings of IEEE international conference on robotics and automation, 3, 1997.

[20] T. Lozano-Perez. Spatial planning: a configuration space approach. IEEE Trans Comput,
pp 108–120, 1983.

[21] S.M. LaValle. Planning Algorithms. Cambridge University Press, 2006.
[22] P.C.Chen and Y.K.Hwang. Pracitcal path planning among movable obstacles. In: proceed-

ings of IEEE international conference on robotics and automation, pp 444–449, 1991.
[23] M. Stilman. PhD Thesis: Navigation Among Movable Obstacles. Technical report, Technical

Report CMU-RI-TR-07-37, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA,
October 2007.

[24] K. Inoue, H. Yoshida, T. Arai, and Y. Mae. Mobile manipulation of humanoids: Real-time
control based on manipulability and stabilty. In: proceedings of IEEE international confer-
ence robotics and automation (ICRA), pp 2217–2222, 2000.

[25] J. Kuffner. Dynamically-stable motion planning for humanoid robots. Autonomous Robots,
12(1), 2002.

[26] K. Harada, S. Kajita, K. Kaneko, and H. Hirukawa. Pushing manipulation by humanoid con-
sidering two-kinds of zmps. In: IEEE international conference on robotics and automation,
pp 1627–1632, 2003.

[27] K. Harada, S. Kajita, F. Kanehiro, K.Fujiwara, K. Kaneko, K.Yokoi, and H. Hirukawa. Real-
time planning of humanoid robot’s gait for force controlled manipulation. In: IEEE inter-
national conference on robotics and automation, pp 616–622, 2004.

[28] Shuuji Kajita and et. al. Biped walking pattern generation by using preview control of zero-
moment point. In: IEEE international conference on robotics and automation, pp 1620–
1626, 2003.

[29] T. Takubo, K. Inoue, and T. Arai. Pushing an object considering the hand reflect forces by
humanoid robot in dynamic walking. In: IEEE international conference on robotics and
automation, pp 1718–1723, 2005.

[30] K. Nishiwaki, W-K. Yoon, and S. Kagami. Motion control system that realizes physical
interaction between robot’s hands and environment during walk. In: IEEE international
conference on Humanoid Robotics, 2006.

[31] K. Nishiwaki and S. Kagami. High frequency walking pattern generation based on preview
control of zmp. In: IEEE international conference on robotics and automation (ICRA’06),
2006.

[32] E. Yoshida, I. Belousov, Claudia Esteves, and J-P. Laumond. Humanoid motion planning for
dynamic tasks. In: IEEE international conference on Humanoid Robotics (Humanoids’05),
2005.

8 Autonomous Manipulation of Movable Obstacles 249

[33] E. Yoshida, C. Esteves, T. Sakaguchi, J-P. Laumond, and K. Yokoi. Smooth collision avoid-
ance: Practical issues in dynamic humanoid motion. In: proceedings of IEEE/RSJ interna-
tional conference on intelligent robots and systems, 2006.

[34] E. Krotkov. Robotic perception of material. IJCAI, pp 88–95, 1995.
[35] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and G. Sandini. Learning about objects through

interaction - initial steps towards artificial cognition. In: proceedings of IEEE international
conference on robotics and automation, pp 3140–3145, 2005.

[36] A. Stoytchev. Behavior-grounded representation of tool affordances. In: proceedings of
IEEE international conference on robotics and automation, pp 3060–3065, 2005.

[37] A. Christiansen, T. M. Mitchell, and M. T. Mason. Learning reliable manipulation strate-
gies without initial physical models. In: proceedings of IEEE international conference on

robotics and automation, 1990.
[38] C.H. An, C.G. Atkeson, and J.M. Hollerbach. Model-Based Control of a Robot Manipulator.

MIT Press, 1988.
[39] C. Canudas de Wit, P. No, A. Aubin, and B. Brogliato. Adaptive friction compensation in

robot manipulators: low velocities.
[40] H. Olsson, KJ Astrom, CC. de Wit, M. Gafvert, and P. Lischinsky. Friction models and

friction compensation.
[41] Stefan Schaal Chris Atkeson, Andrew Moore. Locally weighted learning. AI Review,

11:11–73, April 1997.
[42] Andrew Moore, C. G. Atkeson, and S. A. Schaal. Locally weighted learning for control. AI

Review, 11:75–113, 1997.
[43] M. Vukobratovic, B. Borovac, D. Surla, and D. Stokic. Biped Locomotion: Dynamics,

Stability, Control and Application. Springer, 1990.
[44] M. Vukobratovic and B. Borovac. Zero-moment point-thirty five years of its life. Int J of

Humanoid Robotics, 1(1):157–173, 2004.
[45] D.E. Whitney. Resolved motion rate control of manipulators and human prostheses. IEEE

Trans on Man Machine Systems, 10:47–53, 1969.
[46] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura, H.R.D.C.

Ltd, and J. Saitama. The intelligent ASIMO: system overview and integration. In: proceed-
ings of IEEE/RSJ international conference on intelligent robots and system, 3, 2002.

[47] J. Chestnutt, J. Kuffner, K. Nishiwaki, and S. Kagami. Planning biped navigation strategies
in complex environments. In: 2003 international conference on humanoid robots, 2003.

[48] J. Gutmann, M. Fukuchi, and M. Fujita. Real-time path planning for humanoid robot navi-
gation. In: international joint conference on artificial intelligence, 2005.

[49] E. Yoshida, P. Blazevic, and V. Hugel. Pivoting manipulation of a large object. In: IEEE
international conference on robotics and automation, pp 1052–1057, 2005.

[50] R. Brooks, L. Aryananda, A. Edsinger, P. Fitzpatrick, C. Kemp, U.M. OReilly, E. Torres-
Jara, P. Varshavskaya, and J. Weber. Sensing and Manipulating Built-for-Human Environ-
ments. Int J Humanoid Robotics, 1(1):1–28, 2004.

[51] B.D. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In: proceedings of DARPA Image Understanding workshop, 121:130, 1981.

[52] R.M. Haralick and L.G. Shapiro. Computer and Robot Vision. Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, 1992.

[53] D.A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall, 2003.
[54] K. Dorfmuller. Robust tracking for augmented reality using retroreflective markers. Com-

puters and Graphics, 23(6):795–800, 1999.
[55] Y. Argotti, L. Davis, V. Outters, and J. Rolland. Dynamic superimposition of synthetic

objects on rigid and simple-deformable real objects. Computers and Graphics, 26(6):919,
2002.

[56] A. State, G. Hirota, D.T. Chen, W.F. Garrett, and M.A. Livingston. Superior augmented
reality registration by integrating landmark tracking and magnetic tracking. In: proceedings
of SIGGRAPH’96, page 429, 1996.

250 M. Stilman

[57] M. Stilman, P. Michel, J. Chestnutt, K. Nishiwaki, S. Kagami, and J. Kuffner. Augmented
reality for robot development and experimentation. Technical Report CMU-RI-TR-05-55,
Robotics Institute, Carnegie Mellon University, November 2005.

[58] J. Bentley, G.M. Faust, and F. Preparata. Approximation algorithms for convex hulls.
Comm. of the ACM, 25(1):64–68, 1982.

[59] JJ Kuffner Jr, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Footstep planning among
obstacles for biped robots. In: proceedings of international conference on intelligent robots
and systems, page 500, 2001.

[60] M.A. Erdmann. On Motion Planning with Uncertainty. 1984.
[61] A. Stentz. Optimal and efficient path planning for partially-knownenvironments. In: pro-

ceedings of 1994 IEEE international conference on robotics and automation, pp 3310–3317,

1994.
[62] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Planning and acting in partially observ-

able stochastic domains. Artificial Intelligence, 101(1):99–134, 1998.
[63] M. Jeannerod, M.A. Arbib, G. Rizzolatti, and H. Sakata. Grasping objects: the cortical

mechanisms of visuomotor transformation. Trends Neurosci., 18:314–320, 1995.

	8 Autonomous Manipulation of Movable Obstacles
	8.1 Introduction
	8.1.1 Planning Challenges
	8.1.2 Operators
	8.1.3 Action Spaces
	8.1.4 Complexity of Search

	8.2 NAMO Planning
	8.2.1 Overview
	8.2.2 Configuration Space
	8.2.3 Goals for Navigation
	8.2.4 Goals for Manipulation
	8.2.5 Planning as Graph Search
	8.2.5.1 Linear Problems
	8.2.5.2 Local Manipulation Search
	8.2.5.3 Connecting Free Space
	8.2.5.4 Analysis
	8.2.5.5 Challenges of CONNECTFS

	8.2.6 Planner Prototype
	8.2.6.1 Relaxed Constraint Heuristic
	8.2.6.2 High-level Planner
	8.2.6.3 Examples and Experimental Results
	8.2.6.4 Analysis

	8.2.7 Summary

	8.3 Humanoid Manipulation
	8.3.1 Background
	8.3.2 Biped Control with External Forces
	8.3.2.1 Decoupled Positioning
	8.3.2.2 Trajectory Generation
	8.3.2.3 Online Feedback

	8.3.3 Modeling Object Dynamics
	8.3.3.1 Motivation for Learning Models
	8.3.3.2 Modeling Method

	8.3.4 Experiments and Results
	8.3.4.1 Prediction Accuracy
	8.3.4.2 System Stability

	8.3.5 Summary

	8.4 System Integration
	8.4.1 From Planning to Execution
	8.4.2 Measurement
	8.4.2.1 Object Mesh Modeling
	8.4.2.2 Recognition and Localization

	8.4.3 Planning
	8.4.3.1 Configuration Space
	8.4.3.2 Contact Selection
	8.4.3.3 Action Spaces

	8.4.4 Uncertainty
	8.4.4.1 Impedance Control
	8.4.4.2 Replanning Walking Paths
	8.4.4.3 Guarded Grasping

	8.4.5 Results

	References

