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Abstract: In this paper we study the problem of path planning among movable
obstacles, in which a robot is allowed to move the obstacles if they block the robot’s
way from a start to a goal position. We make the observation that we can decouple
the computations of the robot motions and the obstacle movements, and present a
probabilistically complete algorithm, something which to date has not been achieved
for this problem. Our algorithm maintains an explicit representation of the robot’s
configuration space. We present an efficient implementation for the case of planar,
axis-aligned environments and report experimental results on challenging scenarios.

1 Introduction

In this paper we consider the problem of path planning among movable ob-
stacles. This involves an environment with static and movable obstacles, and
the task is for a robot to plan a path from some start position s to some goal
position g, whereby the robot can move the movable obstacles out of its way.
The robot and the movable obstacles may not collide with other obstacles.

This problem is more complex than typical robot path planning among
only static obstacles. The computational challenge is similar to games like
Sokoban [6] where it is easy to design puzzle scenarios that are difficult even
for experienced human players. Not surprisingly, the problem is known to be
NP-hard [19].

Due to the complexity of our problem, previous works have focused on
heuristics [5, 10, 15], and have given completeness results only for subclasses
of the problem [1, 13, 14, 19]. No complete algorithms are known that cover
the entire problem domain. In contrast, for other path planning problems
generally applicable algorithms have been proposed that rely on probabilis-
tic completeness— a weaker form of completeness that given infinite time
guarantees to find a solution to any problem for which a solution exists [8, 9].
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In this paper, we present a probabilistically complete algorithm that cov-
ers the entire domain of planning among movable obstacles. Our approach is
based on the observation that we can decouple the computation of the robot’s
motion from the computation of the obstacle movements, if we maintain an
explicit representation of the robot’s free configuration space and keep track
of which connected component the robot configuration resides in. We present
an efficient data structure to maintain a representation of the robot’s con-
figuration space for the specific case in which both the robot and obstacle
geometry can be represented by translating axis-aligned rectangles. We im-
plemented our algorithm and data structure and present experimental results
on challenging problem scenarios.

The rest of this paper is organized as follows. In the next section, we give an
overview of previous work. In Section 3, we formally define our path planning
problem. We present our approach and prove its probabilistic completeness
in Section 4. In Section 5 we describe the implementation of our algorithm
and a data structure to maintain the robot’s configuration space, and discuss
results in Section 6. We conclude the paper in Section 7.

2 Related Work

Achieving completeness in planning among movable obstacles has proven ex-
tremely challenging. The problem was shown to be NP-hard by Wilfong [19]
and addressed with heuristic methods by Chen and Hwang [5]. Stilman and
Kuffner [14] introduced (resolution-) completeness to this domain by show-
ing that a subclass of problems called L1 could be solved within a practical
amount of time. The class was broadened to monotone problems in [15]. These
approaches are particularly relevant to practical scenarios where an efficient
method is required to identify blocking obstacles and restore connectivity in
the robot’s free space. However, they cannot solve movable obstacle problems
outside the given subclasses.

Constructing an efficient, generally complete algorithm is difficult even
for the standard path planning problem of a single robot moving among
static obstacles [3]. Recently, probabilistic completeness has become an al-
ternative standard for path planning problems. Sampling-based planners such
as PRM [8] and RRT [9] have proven to be very successful in a domains rang-
ing from single and multiple robots [12, 17] to dynamic environments with
non-holonomic constraints [7]. This success prompted Nieuwenhuisen et. al.
[10] and Stilman et. al. [16] to apply sampling based planning in the movable
obstacle domain. However, in both cases the expansion of search trees for in-
dividual obstacle movements was bounded to ensure proper backtracking over
alternative obstacle choices. In order to ensure probabilistic completeness an
algorithm must explore all possibilities and allow these search trees to grow
indefinitely.
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(a) (b)

Fig. 1. (a) The initial situation of an example problem with three moving obstacles
M1, M2 and M3. The dark grey disc R is the robot. (b) An alternating sequence of
navigation actions (1 and 3) and manipulation actions (2) that solves the problem.

We now propose an algorithm that allows indefinite exploration over all
obstacle movements. The algorithm is proven to be probabilistically complete.
Not only is this result new for the domain of planning among movable obsta-
cles, but also for related domains such as rearrangement planning [2, 4, 11]
or manipulation planning [1, 13] where the goal is specified in terms of goal
configurations for the obstacles, rather than for the robot. While we do not di-
rectly address this variant of the problem, the observations in this paper can
be applied to the design of probabilistically complete algorithms that span
these domains as well.

3 Problem Definition

The problem we discuss in this paper is defined as follows. We are given a
robot R and a two- (or three-) dimensional workspace containing a set of
static obstacles O and a set of n (rigid) movable obstacles {M1, . . . ,Mn}. We
denote the configuration space of R, i.e. the set of all possible configurations
of the robot, by CR (e.g. if R is a “free-flying” robot in the plane, then
CR = R

2× [0, 2π)), and we similarly denote the configuration space of each of
the movable obstacles Mi by CMi

. A movable obstacle cannot move by itself,
but can be moved by R if R first grasps the obstacle.

Given a start configuration s ∈ CR and a goal configuration g ∈ CR for
the robot, and initial configurations (c1, . . . , cn) ∈ CM1

× · · · × CMn
for the

movable obstacles, the task is to find a collision-free path for the robot R from
s to g. The robot is allowed to move the movable obstacles, but only one at
a time, and only if the robot is grasping the obstacle. During the movement
of an obstacle, both the robot and the obstacle should be collision-free with
respect to other obstacles. We generally define that the robot can grasp (and
move) a movable obstacle when it is touching that obstacle.
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The problem is thus defined as finding a sequence of actions, alternating
between navigation actions, in which a robot moves by itself from a config-
uration on the boundary of one moving obstacle to a configuration on the
boundary of another moving obstacle, and manipulation actions, in which the
robot rigidly attaches itself to a movable obstacle and moves as a composite
body from one position to the other. The first and last actions of the sequence
are navigation actions that begin in the robot’s start configuration s, and end
in the robot’s goal configuration g, respectively. The navigation actions in the
sequence may include regrasps of the same obstacle, in which the robot moves
to another configuration on the boundary of the moving obstacle to grasp it
there. In Fig. 1 we show a sequence of actions that solve an example problem.

4 Approach

The problem has traditionally been approached by finding an alternating se-
quence of navigation actions and manipulation actions [1, 10, 13, 14]. This
formulation, however, makes it difficult to devise a (probabilistically) com-
plete planner. This is because each of the navigation and manipulation ac-
tions lie in a sub-dimensional “slice” of the composite configuration space
CR × CM1

× · · · × CMn
of the robot and the obstacles. There is an infinite

number of such slices, and each of these slices have zero probability to re-
ceive a sample in a probabilistic planner. Previous works have circumvented
this problem by constraining the problem to a finite set of possible obstacle
positions and grasps [1], or by dealing with only one movable obstacle [13].

In this paper, we discuss the general continuous problem with any number
of movable obstacles. The key to our approach is that the problem should
not be defined in terms of finding an alternating sequence of navigation and
manipulation actions, but that one should abstract from the precise motions
of the robot, and focus on the movements of the obstacles.

In our approach we are looking for a sequence of obstacle movements. The
precise robot motions that lead to such obstacle movements are not explic-
itly computed; we only make sure that the robot is somehow able to validly
execute those movements. In order to test whether movements of the movable
obstacles are executable by the robot, we maintain an explicit representation
of the free configuration space of the robot. Each of the static and movable
obstacles induce a C-obstacle in the robot’s configuration space, consisting
of robot configurations in which the robot is in collision with that obstacle.
The free configuration space is the space of configurations in which the robot
is collision-free. This free configuration space consists of multiple connected
components, whose boundaries consists of boundaries of C-obstacles (see Fig.
2a). If the robot is on the boundary of the C-obstacle of one of the movable
obstacles, it is touching that obstacle. As defined above, it is then able to
move that movable obstacle. So, if the robot is in a free connected component
N , it is able to move the movable obstacles whose C-obstacles are adjacent to
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Fig. 2. The configuration space of the robot in the situation of Fig. 1a. The C-
obstacles are shown light gray. There are two connected components in the robot’s
free configuration space. The dashed region labeled N is the one the robot is in.

N . When an obstacle is moved, the configuration space of the robot and the
connected component N change their shape, but as long as the C-obstacle of
the movable obstacle remains adjacent to N , the robot is able to execute that
movement. So, it is necessary only to keep track of which connected compo-
nent the robot is in, rather than the exact configuration of the robot. This
observation is central to our approach.

The task is now to find a sequence of obstacle movements that results in
a situation in which the robot’s goal configuration g is in the same connected
component N as the robot. Once we have found such a sequence, we can
(relatively easily) find the actual motions of the robot that execute these
movements as a post-processing step.

In the remainder of this section, we will formalize the above observation
and introduce the state space of the problem (Section 4.1). We then present a
simple random-search algorithm (Section 4.2), and show that this algorithm
is probabilistically complete (Section 4.3). Note that we do not make any
assumption about the nature and dimensionality of the configuration spaces
of both the robot and the movable obstacles.

4.1 State Space

Let us denote the robot R configured at cR ∈ CR by R(cR), and similarly a
movable obstacle Mi configured at ci ∈ CMi

by Mi(ci).
Each of the movable obstacles generates a C-obstacle in the configuration

space CR of the robot (see Fig. 2). Given a specific configuration ci ∈ CMi

of a movable obstacle Mi, its C-obstacle is given by COMi
(ci) = {cR ∈

CR |Mi(ci)∩R(cR) 6= ∅}. Similarly, the static obstacles generate a C-obstacle
COO in CR. Now, given specific configurations (c1, . . . , cn) ∈ CM1

×· · ·×CMn

of all movable obstacles, the free configuration space of the robot, i.e. the
set of all configurations of the robot for which it is collision-free, is given by
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(a) (b)

Fig. 3. Invalid obstacle movements. (a) The movement of obstacle M3 is not exe-
cutable by the robot, because at some point M3’s C-obstacle will not be adjacent
to the connected component N anymore. (b) The movement of obstacle M3 causes
the connected component N of the robot to disappear, so there does not exist a
collision-free motion for the robot to execute this movement.

Cfree
R (c1, . . . , cn) = CR \ (COO ∪

⋃

iCOMi
(ci)). Note that the shape of the

free space of the robot changes when an obstacle is moved. At any time, the
robot’s free configuration space consists of one or more connected components
(see Fig. 2), and the robot must be residing in one of them. We denote the
connected component in which the robot resides by N .

In configurations on the boundary of N , the robot is touching some static
or movable obstacle. If it is touching a movable obstacle Mi, the robot’s con-
figuration is on the boundary of the C-obstacle of Mi as well, and in that case
the robot is able to move Mi. This leads to the following observation.

Definition 1 (Manipulable obstacle). Given the configurations (c1, . . . , cn)
of the movable obstacles and the connected component N of the robot’s free
configuration space that contains the robot, we define a movable obstacle Mi

to be manipulable if its C-obstacle is adjacent to N , i.e. ∂COMi
∩ ∂N 6= ∅,

where ∂ refers to the boundary of a set.

Lemma 1. Given initial configurations (c1, . . . , cn) of the movable obstacles
and the connected component N of the robot’s free configuration space that
contains the robot, the movement of a movable obstacle Mi over a path π :
[0, 1] → CMi

, with π(0) = ci, is valid and can be executed by the robot if (see
Fig. 3 for examples of invalid obstacle movements):

• The movable obstacle Mi is collision-free with respect to the other obstacles
at all times during the movement, i.e. (∀t ∈ [0, 1] :: Mi(π(t)) ∩ O = ∅ ∧
(∀j 6= i :: Mi(π(t)) ∩Mj(cj) = ∅)).

• The movable obstacle Mi is manipulable at all times during the movement,
i.e. (∀t ∈ [0, 1] :: ∂COMi

(π(t)) ∩ ∂N 6= ∅). (Note that the shape of N
changes during the movement of Mi over π.)
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(a) (b)

Fig. 4. (a) A situation in which the movement of obstacle M2 splits the connected
component N . (b) Two motions of the robot executing the same movement of M2,
but ending up in either of the two connected components formed by the split.

Proof. Let the robot initially be in some configuration cR ∈ N . As N shares
part of its boundary with the boundary of COMi

, there exists some collision-
free path within N for the robot to arrive at a point p on the boundary of
COMi

. Let us rigidly attach this point p to COMi
. Now, the robot is able

to move Mi along π. As Mi moves the point p moves, so p might leave the
boundary of N at some moment. At the instant that this happens, the robot
must regrasp, and find a new point p′ that is both on the boundary of N and
on the boundary of COMi

. As there is a part of the boundary of COMi
that is

also on the boundary of N (see the second requirement), such a point p′ must
exist. As both p and p′ are in N at that moment, there exists a free path for
the robot that arrives at p′. Now the robot can continue moving Mi, and the
above process can repeat until Mi arrives at configuration π(1). ⊓⊔

As mentioned, the connected component N of the robot changes its shape
during the movement of an obstacle. In some cases the obstacle movement
may lead to a split of the connected component N into two new connected
components (see Fig. 4a). In such a case, the robot may be in either of the
two newly formed connected components after the split (see Fig. 4b), so we
have to choose which component the robot will next be in.

Based on Lemma 1, we can define the state space our problem “lives”
in. A state x is defined as a tuple 〈c1, . . . , cn, N〉, where c1, . . . , cn are the
configurations of the movable obstacles, and N is the connected component
of the robot’s free configuration space in which the robot resides (note that the
definition of a state does not include any information regarding the specific
configuration of the robot). The state space X is consequently defined as
the set of all states. Given the robot’s goal configuration g, the goal region
Xgoal ⊂ X is given as the set of all states x ∈ X for which g ∈ N . The initial
state xinit ∈ X is given by the initial configurations of the movable obstacles,
and the connected component containing the robot’s start configuration s.
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Algorithm 1 RandomTree(xinit, Xgoal)

1: T ← {xinit}.
2: while true do
3: Pick a random state x ∈ T from the tree.
4: x′ ← Expand(x).
5: T ← T ∪ {x′}.
6: if x′ ∈ Xgoal then
7: Path found! Terminate.

Algorithm 2 Expand(x) : X

1: Pick a random movable obstacle Mi that is manipulable in x.
2: Pick a random configuration c′i from Mi’s configuration space CMi

.
3: return MoveObstacle(x, Mi, c

′

i).

Algorithm 3 MoveObstacle(x = 〈c1, . . . , cn, N〉,Mi, c
′

i) : X

1: while Mi is manipulable and Mi is collision-free and Mi is not at c′i do
2: Move Mi toward c′i, and keep track of the robot’s connected component N .
3: if N splits into two components during the movement of Mi then
4: N ← a component randomly chosen among the two formed by the split.
5: return the resulting state x′.

We define an action u as a tuple 〈Mi, π, χ〉, in which movable obstacle
Mi is moved over path π : [0, 1] → CMi

, and choices as given in χ are made
with respect to the robot’s connected component in cases of component splits
encountered during Mi’s movement over π. An action is valid if the movement
of Mi over π is valid according the requirements of Lemma 1. Applying an
action u to a state x ∈ X results in a new state x′ ∈ X . Below, we present a
simple algorithm that finds a sequence of valid actions that when applied to
the initial state xinit gives a final state in Xgoal.

4.2 Algorithm

Our algorithm randomly builds a tree of states that are connected by
actions. The tree is rooted in the initial state xinit. In each iteration, we
randomly pick a state from the tree, and expand it by applying a randomly
chosen action to that state. The newly created state is then added to the tree.
This repeats until a state has been reached that is in Xgoal (see Algorithm 1).
In the algorithm, we continuously keep track of an explicit representation of
the robot’s configuration space.

We only consider actions that move an obstacle along a straight line in
the obstacle’s configuration space (see Algorithm 2). The obstacle is moved
toward a randomly chosen configuration as long as the movement is valid, or
until the picked configuration is reached (see Algorithm 3). We next prove
that our algorithm is probabilistically complete.
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4.3 Probabilistic Completeness

In the following, a problem solution is defined as a sequence of k straight-
line actions u1, . . . , uk, where uj = 〈Mij

, πj , χj〉 and each πj is a straight-line
path, that transform the initial state into a state in Xgoal. Notice that any
sequence can be approximated with one consisting of straight-line paths. A
solution u1, . . . , uk has clearance ε if any alternative sequence u′1, . . . , u

′

k —
where u′j = 〈Mij

, π′

j , χ
′

j〉 such that the endpoint of each π′

j deviates no more
than ε

k
from the endpoint of πj (i.e. ‖π′

j(1) − πj(1)‖ < ε
k

for all j ∈ 1..k)
and the correct choices χ′

j are made in case of component splits— is also a
solution to the problem. Applying all these alternative sequences u′1, . . . , u

′

k to
the initial state xinit gives a sequenceX0 = {xinit}, X1, . . . , Xk of sets of states,
such that Xk ⊂ Xgoal. The following establishes probabilistic completeness for
the random tree planner.

Theorem 1. If there exists a solution with clearance ε > 0 then the the prob-
ability that RandomTree will find a solution approaches 1 as the number of
states in the tree approaches ∞.

Proof. Assume that the random tree contains state xj−1 ∈ Xj−1 after some
finite number z − 1 of iterations. In the next iteration, each state in the tree
has a probability 1/z to be selected for expansion (see line 3 of Algorithm
1). If xj−1 is chosen as the state to expand, there exists a second probability
greater than some q > 0 that an action 〈Mij

, π′

j , χ
′

j〉 with ‖π′

j(1)−πj(1)‖ < ε
k

is chosen that results in a state xj ∈ Xj (see lines 1-2 of Algorithm 2; c′i needs
to be picked such that ‖c′i − πj(1)‖ < ε

k
). Hence, the probability of ‘success’,

i.e. that the next step in the solution sequence is constructed, in the z’th
iteration is q/z.

Now, let random variable Yz denote the number of successes we have had
after z iterations. The expected value and the variance of Yz are given by:

E(Yz) =

z
∑

i=1

q

i
= q(ψ0(z + 1) + γ) (1)

Var(Yz) =

z
∑

i=1

[q

i
(1 −

q

i
)2 + (1 −

q

i
)(
q

i
)2

]

= E(Yz) + q2(ψ1(z + 1) − π2

6
) (2)

where ψn(x) is the n’th polygamma function, and γ the Euler-Mascheroni
constant (the closed form for Var(Yz) was obtained using Maple).

To construct a solution sequence to a state xk ∈ Xk ⊂ Xgoal, we need k
times success. The expected number of successes E(Yz) approaches infinity as
the number of iterations z approaches infinity (i.e. limz→∞E(Yz) = ∞), so
E(Yz) − k is positive for sufficiently large z. In these cases, the probability
Pr(Yz < k) that after z iterations a solution sequence has not been found is
upper bounded by the Chebyshev inequality:
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Pr(Yz < k) < Pr(|E(Yz) − Yz| > E(Yz) − k) ≤
Var(Yz)

(E(Yz) − k)2
(3)

Pr(Yz < k) approaches zero as the number of iterations z approaches infinity,
as

lim
z→∞

Pr(Yz < k) ≤ lim
z→∞

Var(Yz)

(E(Yz) − k)2
= 0 (4)

Hence, the probability 1 − Pr(Yz < k) that a solution has been found ap-
proaches 1 as the number of states in the tree approaches infinity. ⊓⊔

5 Implementation

The challenging part of the above algorithm is to explicitly maintain the
robot’s configuration space, and detect events (such as connected component
splits) critical for the algorithm. Below, we present a data structure for the
specific case of all obstacles and the robot being axis-aligned rectangles that
can translate in the plane. This data structure enables us to efficiently perform
the checks of lines 1 and 3 of Algorithm 3, in an exact and continuous manner,
so we do not have to rely on approximations taking small discrete steps.

5.1 Data Structure

We maintain two data structures: the workspace, in which we make sure that
movable obstacles will not collide with other movable or static obstacles, and
the configuration space of the robot, in which we keep track of the connected
component the robot is in.

As both the robot and the obstacles are axis-aligned rectangles that trans-
late, the C-obstacles the movable obstacles induce are also axis aligned rect-
angles. Now, we look at all vertical and horizontal lines which are incident
to the boundaries of the workspace obstacles and the C-obstacles, and use
these lines to form which we call a rectangular map for the workspace and the
configuration space of the robot, respectively (see Fig. 5).

For both the workspace and the configuration space of the robot, we store
two lists of lines: one list for horizontal lines and one list for vertical lines. Both
of these lists are ordered, the vertical lines from left to right and the horizontal
lines from bottom to top. With the lines, we store their coordinate, to which
obstacle it belongs, and whether it is the bottom or top line (horizontal lines),
or the left or right line (vertical lines) of the particular obstacle.

For the configuration space of the robot, we maintain some additional
information in the data structure. The rows and columns in between the lines
are overlapping zero or more obstacles. If, for a horizontal row, the bottom
line of an obstacle is below the row, and the top line of the obstacle is above
the row, the row contains the particular obstacle. We store these associations
with the rows and columns. In Fig. 5b, we encoded these associations using
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(a) (b)

Fig. 5. (a) The rectangular map of the workspace. The coordinate and the type (li,
ri, bi and ti mean the left, right. bottom and top line of obstacle Mi, respectively)
are stored with the horizontal and vertical lines. (b) The rectangular map of the
configuration space of the robot. Here, we additionally store with the rows and
columns what obstacles they overlap (see right and top), and for each empty cell in
the map whether or not it belongs to the robot’s connected component.

three bits, one bit for each obstacle. If first bit is 1, then the row (or column)
contains the obstacle M1. If the second bit is 1, it also contains obstacle M2,
etc. Now, to determine the status of a cell in the rectangular map, we can
simply “and” the bits stored at the row and the column of that particular
cell. If the result is 0, the cell is free, otherwise, the bits determine by which
obstacles the cell is occupied.

In addition, we maintain in the configuration space data structure in which
connected component the robot is. Given the initial position of the robot, we
can quickly find in which cell of the (configuration space) map it is. Then, we
“flood fill” the empty cells of the rectangular map from the cell containing
the robot’s position, and store with each free cell a flag indicating whether or
not the cell belongs to the robot’s connected component. In the example of
Fig. 5b, all free cells belong to the robot’s connected component, as there is
only one connected component.

5.2 Events

Given the initial configuration space and workspace as constructed as ex-
plained above, we can manipulate the environment by moving the movable
obstacles. While doing so, we need to keep track of the changes made in the
configuration space data structure and the workspace data structure. We can
only move an obstacle if it is manipulable. This is when in the rectangular map
of the robot’s configuration space, a cell in the connected component of the
robot is adjacent to a cell occupied by the C-obstacle of the movable obstacle.
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Suppose we have selected a movable obstacle to be moved along some straight
line. While moving the obstacle, the coordinates of the horizontal lines and
the vertical lines associated with the obstacle in both the configuration space
and the workspace change. As long as the ordering of the vertical and horizon-
tal lines remains the same, we only need to update the coordinates stored at
the vertical and horizontal lines. However, at the moment two vertical lines or
two horizontal lines swap position in either the workspace or the configuration
space, we need to (1) check if that swap is allowed (does the obstacle lose its
manipulability? does the obstacle collide with another obstacle?), and if so
(2) update the the data structure.

Given a proposed straight-line movement of an obstacle Mi, we can com-
pute using the coordinates of the lines what the first event is that will be
encountered, i.e. the first occasion in which we potentially swap two lines.
Below we iterate over all possible events the can be encountered, and show
for each of them how we check whether the event is allowed. We only discuss
events that occur when Mi moves directly to the right (all other directions
can be handled symmetrically). So, each event involves the left or the right
line of obstacle Mi, and the left or the right line of another obstacle, say Mj ,
in either the workspace or the configuration space (C-space) of the robot.

• Workspace: left line of Mi, left line of Mj . The event is always allowed.
• Workspace: left line of Mi, right line of Mj. The event is always allowed.
• Workspace: right line of Mi, left line of Mj . The event potentially causes

Mi to start colliding with Mj . The event is allowed if the bottom line of
Mi is above the top line of Mj, or if the top line of Mi is below the bottom
line of Mj.

• Workspace: right line of Mi, right line of Mj . The event is always allowed.
• C-space: left line of Mi, left line of Mj. The event potentially causes Mi

to stop being manipulable (similar to the situation of Fig. 3a). The event
is not allowed if all free cells of the connected component of the robot that
are adjacent to the C-obstacle of Mi are below the top line of Mj , above
the bottom line of Mj, and left of the left line of Mj .

• C-space: left line of Mi, right line of Mj . The event is always allowed.
• C-space: right line of Mi, left line of Mj . The event potentially causes the

connected component of of the robot to disappear (similar to the situation
of Fig. 3b). The event is not allowed if all free cells of the connected
component of the robot that are adjacent to the C-obstacle of Mi are
below the top line of Mj , above the bottom line of Mj , and right of the
right line of Mi. The event may also cause a connected component split
(similar to the situation of Fig. 4a); we will discuss this below.

• C-space: right line of Mi, right line of Mj . The event is always allowed.

If the event we encountered is allowed, we need to update the data struc-
ture. If the event happened in the workspace, we only need to swap the in-
volved lines in the ordered list of lines stored in the data structure, and update
the coordinate of the lines of the moved obstacle Mi.
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Algorithm 4 Expand(x = 〈c1, . . . , cn, N〉) : X

1: for K times do
2: Pick a random movable obstacle Mi that is manipulable in x.
3: Pick a random direction θ ∈ {0, π/2, π, 3π/2}, and a random distance r.
4: x← MoveObstacle(x, Mi, ci + (r cos θ, r sin θ)).
5: return x.

If the event happened in the configuration space of the robot, we first
swap the involved lines in the configuration space data structure, and update
the coordinate of the lines of Mi. Second we need to update the information
stored with the column (or row) that is in between the two lines that have
swapped. Given the bit-representation, we simply need to “x-or” the stored
value with the bits of both of the involved obstacles Mi and Mj.

Further, we need to update the component information of the free cells;
i.e. set the flag whether or not they belong to the connected component of
the robot. Only the cells in the column between the two swapped lines may
have changed status from “occupied by a C-obstacle” to “free” or vice versa.
Initially, we set the flag of all cells in that column to 0 (i.e. not belonging to the
robot’s connected component). Then we use a flood fill from free cells flagged
1 that neighbor the column to set all the flags of the free cells belonging to the
robot’s connected component. However, if the event involves the right line of
Mi, and the left line of Mj, the connected component of the robot may have
split into two components (which would both be flagged 1 after the above
flood-fill). Whether this is the case can be checked using another flood fill. If
the connected component has indeed split, the robot can in the new situation
be in either of the newly created components. In our algorithm, we randomly
pick one, and set the flags of the cells in the other component to 0.

After the event has been handled, we can compute what the next event is
that is encountered when moving Mi. This repeats until Mi has reached its
destination, or until an event is encountered that is not allowed.

5.3 Algorithm

We implemented the algorithm of Section 4.2 using the data structure pre-
sented above. For each state in the tree, we store both the rectangular map of
the workspace and the rectangular map of the configuration space of the robot.
As this is quite memory-intensive —the space complexity of the data struc-
ture is O(n2)— we slightly changed Algorithm 2 (see Algorithm 4). Instead of
storing the state after each obstacle movement, we let the state be expanded
by a random sequence of K obstacle movements, where K is a parameter of
the algorithm. This does not affect the probabilistic completeness: Theorem 1
also holds for a sequence of sequences of actions. Further, also without loss of
probabilistic completeness, we let the obstacles only move along axis-aligned
paths (see line 3 of Algorithm 4).
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A B

Fig. 6. The initial situation of two scenarios A and B we perform experiments on.
The movable obstacles are light gray, the static obstacles are dark gray, and the
robot is even darker gray. The robot is shown in its start configuration.

6 Results

As a proof-of-concept, we report results of experiments performed on two
scenarios A and B (see Fig. 6). Scenario A only contains three movable obsta-
cles, but is a difficult problem mainly because of the “lock” created by obstacle
M3. This problem cannot be solved by the algorithm of [15] since it belongs
to the class of non-monotone problems. The planner of [10] does not take into
account indirect obstacle interactions, and therefore would not consider mov-
ing obstacle M2 before moving through the lock of obstacle M3. Scenario B is
more complex in the sense that it contains more obstacles. It is an axis-aligned
version of the problem experimented on in [15]. The big obstacle M1 must be
moved out of the way of the robot, but before this is possible other obstacles

(a) (b)

Fig. 7. (a) A narrow passage
for movable obstacle M formed by
two static obstacles. (b) M bumps
against the obstacles to find its way
through the narrow passage.

have to be moved out of the way ofM1 first.
We performed our experiments on a

1.66 GHz Intel T5500 processor with 1
GByte of memory. Our algorithm solves
scenario A in 0.01 seconds, and scenario B
in 0.03 seconds. The solutions contain 214
and 2100 obstacle movements, respectively.

The solutions produced by our algo-
rithm are not optimal; they include large
amounts of unnecessary obstacle move-
ments. This is because of the purely ran-
dom nature of our algorithm. However, the
solutions are found very fast (although the
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comparison is not entirely fair, [15] reports a running time of 2.08 seconds
on scenario B). This is explained by the efficiency of the rectangular map
data structure, and our algorithm’s inherent advantage in handling narrow
passages: As the movable obstacles only move along axis-aligned paths, they
implicitly use compliance to the static obstacles (see Fig. 7). Even if the
boundaries of two (static) obstacles are collinear (Fig. 7a), there is an explicit
ordering of the lines in the rectangular map data structure, so one is above
the other. This is topologically equivalent to the situation of Fig. 7b, which
the movable obstacles exploit to find their way through narrow passages.

7 Conclusion and Future Work

In this paper, we have discussed the problem of path planning among movable
obstacles. We have made the observation that if we maintain an exact repre-
sentation of the configuration space of the robot and the connected component
the robot is in, we can decouple the computation of the obstacle movements,
and the robot motions that lead to these obstacle movements. This approach
to the problem enabled us to devise the first probabilistically complete algo-
rithm for this domain.

We have presented a data structure called the rectangular map to maintain
an exact representation of the robot’s configuration space in case all obstacles
and the robot are translating axis-aligned rectangles. We have implemented
the algorithm and the data structure, and used it to solve problems that could
not be solved by previous work.

The requirement to maintain an explicit representation of the robot’s con-
figuration space limits the practical applicability of our algorithm to robots
with two or three degrees of freedom. Note, however, that the number of de-
grees of freedom of the movable obstacles is not constrained. Future work
includes the implementation of a data structure to maintain the robot’s con-
figuration space in the more general case of polygonal and circular obstacles
that can both translate and rotate. The arrangement package of Cgal [18]
may provide most of the functionality required. Another possibility to address
this limitation is to maintain the robot’s connected component and its con-
nectivity using sampling-based techniques, without sacrificing probabilistic
completeness. This remains subject of future study.

The fact that our algorithm is probabilistically complete shows that we
have characterized the problem correctly, but it does not necessarily say much
about the performance of the algorithm. In fact, the algorithm that we have
presented performs a rather uninformed brute force search. Enhancing the
algorithm with heuristics to focus the search, such as the ones used in [10, 14,
15], might drastically improve the performance without losing probabilistic
completeness. It may improve the quality of the produced solutions as well.
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17. P. Švestka, M. Overmars. Coordinated path planning for multiple robots.
Robotics and Autonomous Systems 23(3):125–152, 1998.

18. R. Wein, E. Fogel, B. Zukerman, D. Halperin. 2D Arrangements. CGAL User

and Reference Manual, chapter 20, 2007.
19. G. Wilfong. Motion planning in the presence of movable obstacles. Annals of

Mathematics and Artificial Intelligence, 3:131–150, 1991.




